Feedback

Dr. Sourav Bag

Assistant Professor
Department of Chemistry

electrocatalysis, Materials Electrochemistry, Batteries, Fuel cells, Electrolyzers, Electrochemical Energy Storage
Birla Institute of Technology & Science, Pilani
Hyderabad Campus
Jawahar Nagar, Kapra Mandal
Dist.-Medchal-500 078
Telangana, India

Publication

23. Tarancón, A.; Esposito, V.; Bag, S.; Grant, P. et al

2022 Roadmap on 3D Printing for Energy.

J. Phys. Energy 2022, 4, 011501/1-37.

 

22. Bag, S.; Murarka, H.; Zhou, C.; Bhattacharya, A.; Jokhakar, D.; Pol, V. G.; Thangadurai, V.

Understanding the Na-Ion Storage Mechanism in Na3+xV2-xMx(PO4)3 [M=Ni2+, Co2+, Mg2+ and x=0.1-0.5] Cathode.

ACS Appl. Energy Mater. 20203, 8475–8486.

 

 

21. Bag, S.; Zhou, C.; Kim, P.; Pol, V. G.; Thangadurai, V.

LiF Modified Stable Flexible PVDF-Garnet Hybrid Electrolyte for High Performance All-Solid-State Li-S Batteries.

Energy Storage Mater. 202024, 197-207.

 

20. Bag, S.; Zhou, C.; Reid, S.; Butler, S.; Thangadurai, V.

Electrochemical Studies on Symmetric Solid-State Na-ion Full Cell using NASICON-type Electrodes and Polymer Composite Electrolyte.

J. Power Sources 2020454, 227954/1-10.

 

19. Zhou, C.; Bag, S.; He, T.; Lv, B.; Thangadurai, V.

Understanding the Role of Solvents on the Morphological Structure and Li-ion Conductivity of Poly(vinylidene fluoride)-based Polymer Electrolytes.

J. Electrochem. Soc. 2020 167, 070552/1-10.

 

18. Zhou, C.; Bag, S.; He, T.; Lv, B.; Thangadurai, V.

A 20 oC Operating High Capacity Solid-State Li-S Battery with an Engineered Carbon Support Cathode Structure.

Appl. Mater. Today 202019, 100585/1-10.

 

17. Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V.

A Bird’s-Eye View of Li-Stuffed Garnet-type Li7La3Zr2O12 Ceramic Electrolytes for Advanced All-solid-state Li Batteries.

Energy Environ. Sci. 201912, 2957-2975.

 

16. Bag, S.; Roy, A.; Mitra, S.

Sulfur, Nitrogen Dual Doped Reduced Graphene Oxide Supported Two‐Dimensional Sb2S3 Nanostructures for the Anode Material of Sodium‐ion Battery.

ChemistrySelect 20194, 6679-6686.

15. Champagne, P-L.; Ester, D.; Bhattacharya, A.; Hofstetter, K.; Zellman, C.; Bag, S.; Yu, H.; Trudel, S.; Michaelis, V. M.; Williams, V. E.; Thangadurai, V.; Ling, C.-C. 

Liquid Crystalline Lithium-ion Electrolytes Derived from Biodegradable Cyclodextrin.

J. Mater. Chem. A20197, 12201-12213.

 

 

14. Zhou, C.; Bag, S.; Thangadurai, V.

Engineering Materials for Progressive All-Solid-State Na Batteries.

ACS Energy Lett. 201839, 2181-2198.

 

13. Bag, S.; Samanta, A.; Bhunia, P.; Raj, C. R.

Rational Functionalization of Reduced Graphene Oxide with Imidazolium-based Ionic Liquid for Supercapacitor Applications.

Int. J. Hydrogen Energy 2016, 41, 22134-22143.

 

12. Bag, S.; Raj, C. R.

Facile Shape-Controlled Growth of Hierarchical Mesoporous δ-MnO2 for the Development of Asymmetric Supercapacitor.

J. Mater. Chem. A 20164, 8384-8394.

 

11. Bag, S.; Raj, C. R.

On the Electrocatalytic Activity of Nitrogen-doped Reduced Graphene Oxide: Does the Nature of Nitrogen Really Control the Activity Towards Oxygen Reduction?

J Chem. Sci. 2016128, 339-347.

 

10. Bag, S.; Raj, C. R.

Hierarchical Three-Dimensional Mesoporous MnO2 Nanostructure for High Performance Aqueous Asymmetric Supercapacitor.

J. Mater. Chem. A, 2016, 4, 587-595.

9. Bag, S.; Mondal, B.; Das, A. K.; Raj, C. R.

Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide: Synergistic Effect of Dopants Towards Oxygen Reduction Reaction.

Electrochim. Acta2015163, 16-23.

 

8. Bag, S.; Raj, C. R.

Layered Inorganic–Organic Hybrid Material Based on Reduced Graphene Oxide and α-Ni(OH)2 for High Performance Supercapacitor Electrodes.

J. Mater. Chem. A201442, 17848-17856.

7. Bag, S.; Roy, K.; Gopinath, C. S.; Raj, C. R.

Facile Single-Step Synthesis of Nitrogen-Doped Reduced Graphene Oxide-Mn3O4 Hybrid Functional Material for the Electrocatalytic Reduction of Oxygen.

ACS Appl. Mater. Interfaces20146, 2692-2699.

 

6. Chandra, S.; Das, P.; BagS.; Bhar, R.; Pramanik, P.

Mn2ODecorated Graphene Nanosheet: An Advanced Material for the Photocatalytic Degradation of Organic Dyes.

Mater. Sci. Eng. B2012177, 855-861.

 

5. Chandra, S.; BagS.; Das, P.; Bhattacharya, D.; Pramanik, P.

Fabrication of Magnetically Separable Palladium–Graphene Nanocomposite with Unique Catalytic Property of Hydrogenation.

Chem. Phys. Lett.2012519, 59-63.

 

4. Chandra, S.; BagS.; Bhar, R.; Pramanik, P.

Sonochemical Synthesis and Application of Rhodium–Graphene Nanocomposite.

J. Nanopart. Res.201113, 2769-2777.

 

3. Chandra, S.; BagS.; Bhar, R.; Pramanik, P.

Effect of Transition and Non-transition Metals During the Synthesis of Carbon Xerogels.

Microporous and Mesoporous Mater.2011138, 149-156.

 

2. Chandra, S.; Das, P.; BagS.; Laha, D.; Pramanik, P.

Synthesis, Functionalization and Bioimaging Applications of Highly Fluorescent Carbon Nanoparticles.

Nanoscale20113, 1533-1540.
 

1. Chandra, S.; Mitra, S.; Laha, D.; BagS.; Das, P.; Goswami, A.; Pramanik, P.

Fabrication of Multi-structure Nanocarbons from Carbon Xerogel: A Unique Scaffold towards Bio-imaging.

Chem. Commun.201147, 8587-8589.


Book Chapter

2. Bag, S.; Thangadurai, V.

Electrolyte Development for Solid State Lithium Batteries.

2020, In: Skinner, S (Ed.), Energy Storage and Conversion Materials, Royal Society of Chemistry, pp. 100-135.

1. Raj, A.; Bag, S.; Roy, A.; Pal, U.; Mitra, S.

Battery Technologies for Energy Storage.

2017, In: Abraham, M.A. (Ed.), Encyclopaedia of Sustainable Technologies, Elsevier, pp. 469–486.