Feedback

Dr. Shashi Prakash Singh

Assistant Professor

Department of Biological Sciences,
Birla Institute of Technology & Science, Pilani- 333031, Rajasthan. India.
Shashi-Prakash-Singh

Publications

  1. White S.E., Schwartze T.A., Mukundan A., Schoenherr C., Singh S.P., Dinther M.V., Cunningham K.T., White M. P.J., Campion T., Pritchard J., Hinck C.S., Dijke P.t., Inman G., Maizels R.M., HinckP. (2023) TGM6, a helminth secretory product, mimics TGF-β binding to TβRII to antagonize TGF-β signaling in fibroblasts. bioRxiv, https://doi.org/10.1101/2023.12.22.573140. (In revision, Nature Communications).
  2. Singh S.P, Smyth D.J., Cunningham K.T., Mukundan A., Byron C., Hinck C.S,, White M. P.J., Ciancia C., Wosowska N., Sanders A., Jin R., Lilla S., Zanivan S., Schoenherr C., Inman G., Dinther M.V., Dijke P.t., HinckP., Maizels R.M. (2023) The helminth TGF-beta mimic TGM4 is a modular ligand that binds CD44, CD49d and TGF-beta receptors to preferentially target myeloid cells. bioRxiv, https://doi.org/10.1101/2023.11.13.566701. (In revision, EMBO Journal).
  3. Dinther M.V*., Cunningham K. T*., Singh S.P*., White M. P.J., Campion T., Ciancia C., Veelen P.V., de Ru A.H., González-Prieto R., Mukundan A., Byron C., Staggers S., Hinck C.S, HinckP., Dijke P.t. and Maizels R.M. (2023) CD44 acts as a co-receptor for cell-specific enhancement of signaling and regulatory T cell induction by TGM1, a parasite TGF-β mimic. PNAS, 22; 120(34): e2302370120. 10.1073/pnas.2302370120. (* equal contribution). IF 12.779
  4. Buracco S., Singh S.P, Claydon S., Paschke P., Tweedy L., Jamie Whitelaw J., McGarry L., Thomason P. A. and Insall R. H. (2022) The Scar/WAVE complex drives normal actin protrusions without the Arp2/3 complex, but proline-rich domains are required. bioRxiv, https://doi.org/10.1101/2022.05.14.491902. (In revision, Current Biology).
  5. Li D., Yang Y., Wang Y., Chao X., Huang J., Singh S.P., Zhang C., Lou J., Gao P., Shanjin Huang S., and Cai H. (2022). The GxcM-Fbp17/RacC-WASP signaling cascade regulates polarized assembly of cortical actin in migrating cells. Journal of Cell Biology, 222 (6): e202208151, https://doi.org/1083/jcb.202208151
  6. Singh S.P. (2023). Regulation of the Scar/WAVE Complex in Migrating Cells: A Summary of Our Understanding. Journal of Biosciences, 48:16, https://doi.org/1007/s12038-023-00341-7
  7. Singh S. P*., Paschke P., Tweedy L., and Insall R. H. (2022). AKT and SGK Kinases Regulate Cell Migration by Altering Scar/WAVE Complex Activation and Arp2/3 Complex Recruitment. Fronteirs in Molecular Biosciences, 9:965921. https://doi.org/3389/fmolb.2022.965921. (Corresponding author)
  8. Singh S. P. and Insall R. H. (2022). Under-Agarose Chemotaxis and Migration Assays for Dictyostelium. Cell Polarity Signaling: Methods and Protocols, Methods in Molecular Biology, 2438, https://doi.org/10.1007/978-1-0716-2035-9_27.
  9. Singh S. P., Thomason P. A., and Insall R. H. (2021). Extracellular Signalling Modulates Scar/WAVE Complex Activity through Abi Phosphorylation. Cells, 10 (12), 3485. https://doi.org/3390/cells10123485
  10. Yang Y., Chao X., Li D., Singh S. P., Thomason P., Yan Y., Dong M., Li L., Insall R. H., and Cai H. (2021) Leep1 regulates migration and macropinocytosis by coordinating PIP3 signaling and Scar/WAVE complex. Journal of Cell Biology, 220 (7): e202010096. https://doi.org/1083/jcb.202010096
  11. Dhakshinamoorthy R. and Singh S. P. (2021). Evolution of reproductive division of labor - lessons learned from the social amoeba Dictyostelium discoideum during its multicellular development. Frontiers in Cell and Developmental Biology, 4(9):599525. https://doi.org/10.3389/fcell.2021.599525
  12. Singh S. P. and Insall R. H. (2020). Adhesion stimulates Scar/WAVE phosphorylation in mammalian cells. Communicative and Integrative Biology, 14 (1):1-4. https://doi.org/10.1080/19420889.2020.1855854
  13. Singh S. P., Thomason P. A., Lilla S., Schaks M., Tang Q., Goode B., Machesky L.M., Rottner K. and Insall R. H. (2020). Cell–substrate adhesion drives Scar/WAVE activation and phosphorylation by a Ste20-family kinase, which controls pseudopod lifetime. PLoS Biology, 18 (8), e3000774. https://doi.org/10.1371/journal.pbio.3000774
  14. Schaks M., Singh S. P., Kage F., Thomason P. A., Klunemann T., Steffen A., Nlankenfeldt W., Stradal E. T., Insall R. H. and Rottner K. (2018) Distinct interaction sites of Rac GTPase with WAVE regulatory complex have non-redundant functions in vivo. Current Biology, 28(22): 3674-3684. https://doi.org/10.1016/j.cub.2018.10.002
  15. Singh S. P., Dhakshinamoorthy R., Jaiswal P., Schmidt S., Thewes S. and Baskar R. (2014) The thyroxine inactivating gene, type III deiodinase, suppresses multiple signaling centers in Dictyostelium discoideum. Developmental Biology 396(2), 98-110.https://doi.org/1016/j.ydbio.2014.10.012. 
  16. Jaiswal P., Singh S. P., Aiyar P., Akkali.  R. and Baskar R. (2012) Regulation of multiple tip formation by caffeine in cellular slime molds. BMC Developmental Biology, 12-26. https://doi.org/10.1186/1471-213X-12-26