Linear Algebraic methods in Combinatorics

Sivaramakrishnan S
Dept of Mathematics
IIT Bombay

18 Apr 2023, BITS, Goa

A tale of four cities...

A tale of four cities...

Even City :

A tale of four cities...

Even City: Has $n=40$ inhabitants. They keep forming clubs.

A tale of four cities...

Even City: Has $n=40$ inhabitants. They keep forming clubs. How many clubs can there be if no two clubs have the same set of people?

A tale of four cities...

Even City: Has $n=40$ inhabitants. They keep forming clubs. How many clubs can there be if no two clubs have the same set of people? Since there are $2^{40}=1099511627776>10^{13}$ clubs, a dictatorial council imposes some rules for forming clubs (in the hope of reducing the number of allowed clubs).

A tale of four cities...

Even City: Has $n=40$ inhabitants. They keep forming clubs. How many clubs can there be if no two clubs have the same set of people? Since there are $2^{40}=1099511627776>10^{13}$ clubs, a dictatorial council imposes some rules for forming clubs (in the hope of reducing the number of allowed clubs).

Dictatorial rules :

A tale of four cities...

Even City: Has $n=40$ inhabitants. They keep forming clubs. How many clubs can there be if no two clubs have the same set of people? Since there are $2^{40}=1099511627776>10^{13}$ clubs, a dictatorial council imposes some rules for forming clubs (in the hope of reducing the number of allowed clubs).

Dictatorial rules :

(1) Each club has an even number of people in it.

A tale of four cities...

Even City: Has $n=40$ inhabitants. They keep forming clubs. How many clubs can there be if no two clubs have the same set of people? Since there are $2^{40}=1099511627776>10^{13}$ clubs, a dictatorial council imposes some rules for forming clubs (in the hope of reducing the number of allowed clubs).

Dictatorial rules :

(1) Each club has an even number of people in it.
(2) Every pair of clubs has an even number of people.

A tale of four cities...

Even City: Has $n=40$ inhabitants. They keep forming clubs. How many clubs can there be if no two clubs have the same set of people? Since there are $2^{40}=1099511627776>10^{13}$ clubs, a dictatorial council imposes some rules for forming clubs (in the hope of reducing the number of allowed clubs).

Dictatorial rules :

(1) Each club has an even number of people in it.
(2) Every pair of clubs has an even number of people.
(3) No two clubs have the same set of members.

Even City

Even City

Question: How many clubs can there now be?

Even City

Question: How many clubs can there now be? Easy to form $2^{20}>10^{6}$ clubs. Quite big for a city with just 40 inhabitants!

Even City

Question: How many clubs can there now be? Easy to form $2^{20}>10^{6}$ clubs. Quite big for a city with just 40 inhabitants! Non-trivial fact: For any set of $\ell<2^{20}$ clubs, we can add one more club.

The second city - Odd City

The second city - Odd City

Again has 40 inhabitants.

The second city - Odd City

Again has 40 inhabitants. Dictatorial Rules :

The second city - Odd City

Again has 40 inhabitants. Dictatorial Rules :
(1) Each club has an odd number of people in it.

The second city - Odd City

Again has 40 inhabitants.

Dictatorial Rules :

(1) Each club has an odd number of people in it.
(2) Every pair of clubs has an odd number of people.

The second city - Odd City

Again has 40 inhabitants.

Dictatorial Rules :

(1) Each club has an odd number of people in it.
(2) Every pair of clubs has an odd number of people.
(3) No two clubs can have the same set of people.

The second city - Odd City

Again has 40 inhabitants.

Dictatorial Rules :

(1) Each club has an odd number of people in it.
(2) Every pair of clubs has an odd number of people.
(3) No two clubs can have the same set of people.

Question : How many clubs can there be?

Odd city

Odd city

Easy to form $2^{19}=524288 \geq 1 / 2 \cdot 10^{6}$ clubs.

Odd city

Easy to form $2^{19}=524288 \geq 1 / 2 \cdot 10^{6}$ clubs. Council members are certainly not happy.

The third city - Odd-Even city

The third city - Odd-Even city

Again has 40 inhabitants.

The third city - Odd-Even city

Again has 40 inhabitants.
Dictatorial rules:

The third city - Odd-Even city

Again has 40 inhabitants.

Dictatorial rules:

(1) Each club has an odd number of people in it.

The third city - Odd-Even city

Again has 40 inhabitants.

Dictatorial rules:

(1) Each club has an odd number of people in it.
(2) Every pair of clubs has an even number of people.

The third city - Odd-Even city

Again has 40 inhabitants.

Dictatorial rules:

(1) Each club has an odd number of people in it.
(2) Every pair of clubs has an even number of people.

Question : How many clubs can there be?

Odd-Even city

Odd-Even city

Easy to see that there can be 40 clubs.

Odd-Even city

Easy to see that there can be 40 clubs. Solution 1: Each person is a club of one.

Odd-Even city

Easy to see that there can be 40 clubs.
Solution 1: Each person is a club of one.
Solution 2: Each club has 39 people, i-th club does not have the i-th person.

Odd-Even city

Easy to see that there can be 40 clubs.
Solution 1: Each person is a club of one.
Solution 2: Each club has 39 people, i-th club does not have the i-th person.
Thus, there can be at least 40 clubs.

Odd-Even city

Easy to see that there can be 40 clubs.
Solution 1: Each person is a club of one.
Solution 2: Each club has 39 people, i-th club does not have the i-th person.
Thus, there can be at least 40 clubs.
Question : Can there be more?

Odd-Even city

Odd-Even city

Theorem 1

There can be at most 40 clubs!

Odd-Even city

Theorem 1

There can be at most 40 clubs!

Proof :

Odd-Even city

Theorem 1

There can be at most 40 clubs!
Proof: Let there be t clubs, $C_{1}, C_{2}, \ldots, C_{t}$. Take the indicator vector $x_{i} \in\{0,1\}^{40}$ of club C_{i}. The x_{i} 's lie in a 40 dimensional space.

Odd-Even city

Theorem 1

There can be at most 40 clubs!
Proof: Let there be t clubs, $C_{1}, C_{2}, \ldots, C_{t}$. Take the indicator vector $x_{i} \in\{0,1\}^{40}$ of club C_{i}. The x_{i} 's lie in a 40 dimensional space. They are linearly independent over \mathbb{Z}_{2}. (This is a strong statement.)

Odd-Even city

Theorem 1

There can be at most 40 clubs!
Proof: Let there be t clubs, $C_{1}, C_{2}, \ldots, C_{t}$. Take the indicator vector $x_{i} \in\{0,1\}^{40}$ of club C_{i}. The x_{i} 's lie in a 40 dimensional space. They are linearly independent over \mathbb{Z}_{2}. (This is a strong statement.) In a vector space of dimension 40, there cannot be more than 40 linearly independent vectors.

Proof of theorem

Proof of theorem

Note that $x_{i} \cdot x_{j}$ is odd (non zero in \mathbb{Z}_{2}) iff $i=j$.

Proof of theorem

Note that $x_{i} \cdot x_{j}$ is odd (non zero in \mathbb{Z}_{2}) iff $i=j$. If $\lambda_{1} \cdot x_{1}+\lambda_{2} \cdot x_{2}+\cdots \lambda_{t} \cdot x_{t}=0$

Proof of theorem

Note that $x_{i} \cdot x_{j}$ is odd (non zero in \mathbb{Z}_{2}) iff $i=j$. If $\lambda_{1} \cdot x_{1}+\lambda_{2} \cdot x_{2}+\cdots \lambda_{t} \cdot x_{t}=0$
Then take dot product with x_{i} to get $\lambda_{i}=0$.

Proof of theorem

Note that $x_{i} \cdot x_{j}$ is odd (non zero in \mathbb{Z}_{2}) iff $i=j$.
If $\lambda_{1} \cdot x_{1}+\lambda_{2} \cdot x_{2}+\cdots \lambda_{t} \cdot x_{t}=0$
Then take dot product with x_{i} to get $\lambda_{i}=0$.
Do this for all i. Thus all λ_{i} 's are zero. Hence the x_{i} 's are linearly independent.

Another proof

Another proof

Let there be t clubs, $C_{1}, C_{2}, \ldots, C_{t}$. Recall x_{i} is the indicator (column) vector of the club C_{i}.

Another proof

Let there be t clubs, $C_{1}, C_{2}, \ldots, C_{t}$. Recall x_{i} is the indicator (column) vector of the club C_{i}.
Take the $40 \times t$ matrix M whose i-th column is x_{i}.

Another proof

Let there be t clubs, $C_{1}, C_{2}, \ldots, C_{t}$. Recall x_{i} is the indicator (column) vector of the club C_{i}.
Take the $40 \times t$ matrix M whose i-th column is x_{i}.
Claim : $\operatorname{rank}_{\mathbb{Z}_{2}}(M)=t$.

Another proof

Let there be t clubs, $C_{1}, C_{2}, \ldots, C_{t}$. Recall x_{i} is the indicator (column) vector of the club C_{i}.
Take the $40 \times t$ matrix M whose i-th column is x_{i}.
Claim : $\operatorname{rank}_{\mathbb{Z}_{2}}(M)=t$.
Proof : Let $N=M^{T} M$.

Another proof

Let there be t clubs, $C_{1}, C_{2}, \ldots, C_{t}$. Recall x_{i} is the indicator (column) vector of the club C_{i}.
Take the $40 \times t$ matrix M whose i-th column is x_{i}.
Claim : $\operatorname{rank}_{\mathbb{Z}_{2}}(M)=t$.
Proof : Let $N=M^{T} M$.
Fact : For any field $\mathbb{F}, \operatorname{rank}_{\mathbb{F}}(A B) \leq \min \left(\operatorname{rank}_{\mathbb{F}}(A), \operatorname{rank}_{\mathbb{F}}(B)\right)$

Another proof - cont'd

Another proof - cont'd

Thus, $\operatorname{rank}_{\mathbb{Z}_{2}}(N) \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M)$.

Another proof - cont'd

Thus, $\operatorname{rank}_{\mathbb{Z}_{2}}(N) \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M)$.
Because of our odd-even condition, over $\mathbb{Z}_{2}, N=I_{t \times t}$.

Another proof - cont'd

Thus, $\operatorname{rank}_{\mathbb{Z}_{2}}(N) \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M)$.
Because of our odd-even condition, over $\mathbb{Z}_{2}, N=I_{t \times t}$. Thus $t \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M)$.

Another proof - cont'd

Thus, $\operatorname{rank}_{\mathbb{Z}_{2}}(N) \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M)$.
Because of our odd-even condition, over $\mathbb{Z}_{2}, N=I_{t \times t}$. Thus $t \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M)$.
We know that $\operatorname{rank}_{\mathbb{Z}_{2}}(M) \leq \min (t, 40)$.

Another proof - cont'd

Thus, $\operatorname{rank}_{\mathbb{Z}_{2}}(N) \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M)$.
Because of our odd-even condition, over $\mathbb{Z}_{2}, N=I_{t \times t}$. Thus $t \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M)$.
We know that $\operatorname{rank}_{\mathbb{Z}_{2}}(M) \leq \min (t, 40)$.
i.e. $t \leq \operatorname{rank}_{\mathbb{Z}_{2}}(M) \leq \min (t, 40)$ and so $t \leq 40$.

Non trivial fact

Non trivial fact

Recall: For even city, if there were $\ell<2^{20}$ clubs, we could add another club without violating maximality.

Non trivial fact

Recall: For even city, if there were $\ell<2^{20}$ clubs, we could add another club without violating maximality.
Question: Is the same true for Odd-even town?

The fourth city...

The fourth city...

Reverse City : Again has 40 inhabitants.
(1) Each club has an even number of people in it.
(2) Every pair of clubs has an odd number of people.

The fourth city...

Reverse City : Again has 40 inhabitants.
(1) Each club has an even number of people in it.
(2) Every pair of clubs has an odd number of people.

Question : How many clubs can there be? Think it over...

Same intersection size

Same intersection size

Question : How many sets of an n sized universe can we get if all pairwise intersections must have the same cardinality?

Same intersection size

Question : How many sets of an n sized universe can we get if all pairwise intersections must have the same cardinality?

```
Theorem 2
If S
|}\mp@subsup{S}{i}{}\cap\mp@subsup{S}{j}{}|=\ell\mathrm{ , then }t\leqn
```


Same intersection size

Question : How many sets of an n sized universe can we get if all pairwise intersections must have the same cardinality?

Theorem 2

If $S_{1}, S_{2}, \ldots, S_{t}$ are distinct subsets of $[n]$ such that for all $i \neq j$, $\left|S_{i} \cap S_{j}\right|=\ell$, then $t \leq n$.

Proof : If one S_{i} has size ℓ, then all other sets contain S_{i} and are mutually disjoint outside S_{i}. Thus $t \leq n-\ell \leq n$.

Same intersection size

Question : How many sets of an n sized universe can we get if all pairwise intersections must have the same cardinality?

Theorem 2

If $S_{1}, S_{2}, \ldots, S_{t}$ are distinct subsets of $[n]$ such that for all $i \neq j$, $\left|S_{i} \cap S_{j}\right|=\ell$, then $t \leq n$.

Proof : If one S_{i} has size ℓ, then all other sets contain S_{i} and are mutually disjoint outside S_{i}. Thus $t \leq n-\ell \leq n$. If no set S_{i} has size ℓ, then $\left|S_{i}\right|>\ell$ for all i.

Same intersection size

Question : How many sets of an n sized universe can we get if all pairwise intersections must have the same cardinality?

Theorem 2

If $S_{1}, S_{2}, \ldots, S_{t}$ are distinct subsets of $[n]$ such that for all $i \neq j$, $\left|S_{i} \cap S_{j}\right|=\ell$, then $t \leq n$.

Proof : If one S_{i} has size ℓ, then all other sets contain S_{i} and are mutually disjoint outside S_{i}. Thus $t \leq n-\ell \leq n$.
If no set S_{i} has size ℓ, then $\left|S_{i}\right|>\ell$ for all i.
Let M be the $n \times t$ matrix and let $N=M^{T} M$.

Proof - cont'd

Proof - cont'd

Claim 1
 $\operatorname{rank}_{\mathbb{Q}}(N)=t$.

Proof - cont'd

Claim 1
 $\operatorname{rank}_{\mathbb{Q}}(N)=t$.

Stronger claim: The matrix N is positive definite.

Proof - cont'd

Claim 1
 $\operatorname{rank}_{\mathbb{Q}}(N)=t$.

Stronger claim: The matrix N is positive definite.
Let $K=\operatorname{diag}\left[\left|S_{i}\right|-\ell\right]$.

Proof - cont'd

Claim 1
 $\operatorname{rank}_{\mathbb{Q}}(N)=t$.

Stronger claim: The matrix N is positive definite.
Let $K=\operatorname{diag}\left[\left|S_{i}\right|-\ell\right]$.
It is easy to see that $N=\ell J+K$.

Ramsey Theory

Ramsey Theory

Theorem 3

In ANY colouring of the edges of the complete graph on 6 vertices with two colours red and blue, there is a monochromatic triangle. The same is NOT true if we were to colour the complete graph on 5 vertices.

Ramsey Theory

Theorem 3

In ANY colouring of the edges of the complete graph on 6 vertices with two colours red and blue, there is a monochromatic triangle. The same is NOT true if we were to colour the complete graph on 5 vertices.

Cliques in graphs

Cliques in graphs

A clique (or complete graph) on n vertices is a graph where each pair of edges is present.

Cliques in graphs

A clique (or complete graph) on n vertices is a graph where each pair of edges is present.

Cliques in graphs

A clique (or complete graph) on n vertices is a graph where each pair of edges is present.

Call $R(r d, b /)$ as the minimum number of vertices such that $A N Y$ colouring of the edges of the complete graph on $R(r d, b /)$ vertices has a RED clique of size r d or a BLUE clique of size bl.

Ramsey Theory

Ramsey Theory

$R(3,3)=6$.

Ramsey Theory

$R(3,3)=6 . \quad R(2, t)=?$.

Ramsey Theory

$R(3,3)=6 . R(2, t)=?$.
Question 2
Does $R(p, q)$ exist for all p and q ?

Ramsey Theory

$R(3,3)=6 . R(2, t)=?$.
Question 2
Does $R(p, q)$ exist for all p and q ?
Theorem 4 (Ramsey, 1927)
For all p, q the number $R(p, q)$ is finite.

Ramsey Theory

$R(3,3)=6 . R(2, t)=?$.
Question 2
Does $R(p, q)$ exist for all p and q ?
Theorem 4 (Ramsey, 1927)
For all p, q the number $R(p, q)$ is finite.
We don't know exact values of $R(p, q)$ for arbitrary p and q.

We have seen $R(3,3)=6$.

We have seen $R(3,3)=6$. It is known that $R(4,4)=18$.

We have seen $R(3,3)=6$. It is known that $R(4,4)=18$. Paul Erdös joked about these numbers

We have seen $R(3,3)=6$. It is known that $R(4,4)=18$. Paul Erdös joked about these numbers

Paul Erdös (1913-1996).

We have seen $R(3,3)=6$. It is known that $R(4,4)=18$. Paul Erdös joked about these numbers

Paul Erdös (1913-1996).

Can we get bounds on these Ramsey Numbers?

Bounds on Ramsey numbers

Bounds on Ramsey numbers

Theorem 5 (Erdös, 1960's)
$(\sqrt{2})^{k} \leq R(k, k) \leq 4^{k}$.

Bounds on Ramsey numbers

Theorem 5 (Erdös, 1960's)

$(\sqrt{2})^{k} \leq R(k, k) \leq 4^{k}$. Alas, the proofs of Erdös are probabilistic. We do not know an explicit family of graphs on $(\sqrt{2})^{k}$ vertices and a proof that the family is a Ramsey graph.

An explicit lower bound

An explicit lower bound

> Theorem 6 (Folklore, 1960's)
> $R(k, k) \geq(k-1)^{2}$.

An explicit lower bound

> Theorem 6 (Folklore, 1960's)
> $R(k, k) \geq(k-1)^{2}$.

Theorem 7 (Nagy, 1972)
$R(k, k) \geq \Omega\left(k^{3}\right)$

An explicit lower bound

> Theorem 6 (Folklore, 1960's)
> $R(k, k) \geq(k-1)^{2}$.

Theorem 7 (Nagy, 1972)
$R(k, k) \geq \Omega\left(k^{3}\right)$
Consider a universe U with k elements.

An explicit lower bound

> Theorem 6 (Folklore, 1960's)
> $R(k, k) \geq(k-1)^{2}$.

Theorem 7 (Nagy, 1972)
$R(k, k) \geq \Omega\left(k^{3}\right)$
Consider a universe U with k elements. Nagy's graph has all possible 3-subsets of U as vertices.

An explicit lower bound

> Theorem 6 (Folklore, 1960's)
> $R(k, k) \geq(k-1)^{2}$.

Theorem 7 (Nagy, 1972)
$R(k, k) \geq \Omega\left(k^{3}\right)$
Consider a universe U with k elements. Nagy's graph has all possible 3-subsets of U as vertices. The edge connecting R and S is coloured blue iff $|R \cap S|=1$.

An explicit lower bound

> Theorem 6 (Folklore, 1960's)
> $R(k, k) \geq(k-1)^{2}$.

Theorem 7 (Nagy, 1972)
$R(k, k) \geq \Omega\left(k^{3}\right)$
Consider a universe U with k elements. Nagy's graph has all possible 3-subsets of U as vertices. The edge connecting R and S is coloured blue iff $|R \cap S|=1$. Claim : This graph has no monochromatic clique of size k.

Nagy's theorem

Nagy's theorem

Argument against blue cliques

Nagy's theorem

Argument against blue cliques Blue clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=1$.

Nagy's theorem

Argument against blue cliques Blue clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=1$. Use the same intersection size theorem!

Nagy's theorem

Argument against blue cliques Blue clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=1$. Use the same intersection size theorem! Argument against red cliques

Nagy's theorem

Argument against blue cliques Blue clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=1$. Use the same intersection size theorem! Argument against red cliques Red clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=0,2$, but $\left|S_{i}\right|=3$.

Nagy's theorem

Argument against blue cliques Blue clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=1$. Use the same intersection size theorem! Argument against red cliques Red clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=0,2$, but $\left|S_{i}\right|=3$. Use Odd-even town theorem!

Nagy's theorem

Argument against blue cliques Blue clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=1$. Use the same intersection size theorem! Argument against red cliques Red clique implies sets $S_{1}, S_{2}, \cdots, S_{t}$ such that for all $i \neq j,\left|S_{i} \cap S_{j}\right|=0,2$, but $\left|S_{i}\right|=3$. Use Odd-even town theorem!
Thus there is no monochromatic clique of size $k!!$

Graham-Pollak Theorem

Let K_{n} be the complete graph on n vertices. We want to cover all the edges of K_{n} using complete bipartite graphs $K_{S_{i}, T_{i}}$ such that each edge of K_{n} occurs in precisely one $K_{S_{i}, T_{i}}$ and use the minimum number of complete bipartite graphs.

Graham-Pollak Theorem

Let K_{n} be the complete graph on n vertices. We want to cover all the edges of K_{n} using complete bipartite graphs $K_{S_{i}, T_{i}}$ such that each edge of K_{n} occurs in precisely one $K_{S_{i}, T_{i}}$ and use the minimum number of complete bipartite graphs.

Theorem 8 (Graham-Pollak)

The minimum number of complete bipartite graphs needed to cover the edges of K_{n} (as a disjoint union) is $n-1$.

Proof: Assume that the vertex set of K_{n} is $\{1,2, \ldots, n\}$. Associate a polynomial $P_{G}\left(x_{1}, \ldots x_{n}\right)=\sum_{e \in E(G), e=\{i, j\}} x_{i} x_{j}$ to the graph G.

Proof: Assume that the vertex set of K_{n} is $\{1,2, \ldots, n\}$. Associate a polynomial $P_{G}\left(x_{1}, \ldots x_{n}\right)=\sum_{e \in E(G), e=\{i, j\}} x_{i} x_{j}$ to the graph G. Suppose $K_{S_{i}, T_{i}}$ for $1 \leq i \leq q$ covers the edges of K_{n}, and let $q \leq n-2$.

Proof: Assume that the vertex set of K_{n} is $\{1,2, \ldots, n\}$. Associate a polynomial $P_{G}\left(x_{1}, \ldots x_{n}\right)=\sum_{e \in E(G), e=\{i, j\}} x_{i} x_{j}$ to the graph G. Suppose $K_{S_{i}, T_{i}}$ for $1 \leq i \leq q$ covers the edges of K_{n}, and let $q \leq n-2$. We clearly have $P_{K_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{q} P_{K_{S_{i}}, T_{i}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

It is easy to see that
$P_{K_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\sum_{i=1}^{n} x_{i}^{2}\right]$.

It is easy to see that
$P_{K_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\sum_{i=1}^{n} x_{i}^{2}\right]$. and that $P_{K_{S_{a}, T_{a}}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sum_{i \in S_{a}} x_{i}\right)\left(\sum_{j \in T_{a}} x_{j}\right)$.

It is easy to see that
$P_{K_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\sum_{i=1}^{n} x_{i}^{2}\right]$.
and that $P_{K_{S_{a}, T_{a}}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sum_{i \in S_{a}} x_{i}\right)\left(\sum_{j \in T_{a}} x_{j}\right)$.
Consider the linear homogeneous system of equations $\sum_{i \in S_{k}} x_{i}=0$ for $1 \leq k \leq q$ and $\sum_{i=1}^{n} x_{i}=0$.

It is easy to see that
$P_{K_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\sum_{i=1}^{n} x_{i}^{2}\right]$.
and that $P_{K_{S_{a}, T_{a}}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sum_{i \in S_{a}} x_{i}\right)\left(\sum_{j \in T_{a}} x_{j}\right)$.
Consider the linear homogeneous system of equations $\sum_{i \in S_{k}} x_{i}=0$ for $1 \leq k \leq q$ and $\sum_{i=1}^{n} x_{i}=0$.
Since $q \leq n-2$, this system has n variables and at most $n-1$ equations.
Thus, over \mathbb{R}, there is a non-zero solution $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$.

It is easy to see that
$P_{K_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\sum_{i=1}^{n} x_{i}^{2}\right]$.
and that $P_{K_{S_{a}, T_{a}}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sum_{i \in S_{a}} x_{i}\right)\left(\sum_{j \in T_{a}} x_{j}\right)$.
Consider the linear homogeneous system of equations $\sum_{i \in S_{k}} x_{i}=0$ for $1 \leq k \leq q$ and $\sum_{i=1}^{n} x_{i}=0$.
Since $q \leq n-2$, this system has n variables and at most $n-1$ equations.
Thus, over \mathbb{R}, there is a non-zero solution $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$.
This solution violates $P_{K_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{q} P_{K_{S_{i}}, T_{i}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
This gives us a contradiction.

The end...

Questions/ Comments???

