On a degenerate algebraic Riccati equation

S. Kesavan
kesh@imsc.res.in

BITS, Goa,
February 28, 2023

A linear ODE

Let $a \in \mathbb{R}$. Consider the initial value problem:

$$
\begin{aligned}
\frac{d u}{d t}(t) & =a u(t), \quad t \in \mathbb{R}, \\
u(0) & =u_{0} .
\end{aligned}
$$

A linear ODE

Let $a \in \mathbb{R}$. Consider the initial value problem:

$$
\begin{aligned}
\frac{d u}{d t}(t) & =a u(t), \quad t \in \mathbb{R}, \\
u(0) & =u_{0} .
\end{aligned}
$$

This has the solution $u(t)=e^{t a} u_{0}$.

A linear ODE

Let $a \in \mathbb{R}$. Consider the initial value problem:

$$
\begin{aligned}
\frac{d u}{d t}(t) & =a u(t), \quad t \in \mathbb{R}, \\
u(0) & =u_{0} .
\end{aligned}
$$

This has the solution $u(t)=e^{t a} u_{0}$.
Now let A be an $N \times N$ matrix. Consider the system of equations

A linear ODE

Let $a \in \mathbb{R}$. Consider the initial value problem:

$$
\begin{aligned}
\frac{d u}{d t}(t) & =a u(t), \quad t \in \mathbb{R} \\
u(0) & =u_{0}
\end{aligned}
$$

This has the solution $u(t)=e^{t a} u_{0}$.
Now let A be an $N \times N$ matrix. Consider the system of equations

$$
\begin{aligned}
\frac{d \mathrm{u}}{d t}(t) & =A \mathrm{u}(\mathrm{t}), \quad t \in \mathbb{R}, \\
\mathrm{u}(0) & =\mathrm{u}_{0}
\end{aligned}
$$

where u_{0} and $\mathrm{u}(t)$ are in $\mathbb{R}^{\mathbb{N}}$ for each $t \in \mathbb{R}$.

A linear ODE

Let $a \in \mathbb{R}$. Consider the initial value problem:

$$
\begin{aligned}
\frac{d u}{d t}(t) & =a u(t), \quad t \in \mathbb{R} \\
u(0) & =u_{0}
\end{aligned}
$$

This has the solution $u(t)=e^{t a} u_{0}$.
Now let A be an $N \times N$ matrix. Consider the system of equations

$$
\begin{aligned}
\frac{d \mathrm{u}}{d t}(t) & =A \mathrm{u}(\mathrm{t}), \quad t \in \mathbb{R}, \\
\mathrm{u}(0) & =\mathrm{u}_{0}
\end{aligned}
$$

where u_{0} and $\mathrm{u}(t)$ are in $\mathbb{R}^{\mathbb{N}}$ for each $t \in \mathbb{R}$.
We can now write down the solution to this equation in the form

$$
\mathrm{u}(t)=e^{t A} \mathrm{u}_{0}, t \in \mathbb{R}
$$

where, for any $N \times N$ matrix B, the matrix e^{B} is defined by the usual exponential series, i.e.

$$
e^{B}=I+\sum_{n=1}^{\infty} \frac{B^{n}}{n!}
$$

Examples

Example If A is a diagonal matrix $\operatorname{diag}\left\{d_{1}, \cdots, d_{N}\right\}$, then

$$
e^{t A}=\operatorname{diag}\left(e^{t d_{1}}, \cdots, e^{t d_{N}}\right)
$$

Example Let $\alpha, \omega \in \mathbb{R}$.

$$
A=\left[\begin{array}{rr}
\alpha & \omega \\
-\omega & \alpha
\end{array}\right] .
$$

Then

$$
e^{t A}=
$$

Examples

Example If A is a diagonal matrix $\operatorname{diag}\left\{d_{1}, \cdots, d_{N}\right\}$, then

$$
e^{t A}=\operatorname{diag}\left(e^{t d_{1}}, \cdots, e^{t d_{N}}\right)
$$

Example Let $\alpha, \omega \in \mathbb{R}$.

$$
A=\left[\begin{array}{rr}
\alpha & \omega \\
-\omega & \alpha
\end{array}\right]
$$

Then

$$
e^{t A}=e^{\alpha t}\left[\begin{array}{rr}
\cos \omega t & \sin \omega t \\
-\sin \omega t & \cos \omega t
\end{array}\right]
$$

Now, if V is any Banach space and $A \in \mathcal{L}(V)$, we can till define e^{A} via the exponential series and $e^{A} \in \mathcal{L}(V)$. Now if we have the initial value problem

$$
\begin{aligned}
\frac{d u}{d t}(t) & =A u(t), \quad t \in \mathbb{R} \\
u(0) & =u_{0}
\end{aligned}
$$

where u_{0} and $u(t)$ are in V for all $t \in \mathbb{R}$, we still can write the solution as

$$
u(t)=e^{t A} u_{0}, \quad t \in \mathbb{R}
$$

Partial differential equations

Many linear partial differential equations of evolution type can be put in the following format: Let V be a Banach space (often a Hilbert space). Let $u_{0} \in V$. Find $u(t) \in V$ such that the mapping $t \mapsto u(t)$ is differentiable on $\{t>0\}$ and

$$
\begin{align*}
\frac{d u}{d t}(t) & =A u(t), \text { for } t>0 \tag{1}\\
u(0) & =u_{0}
\end{align*}
$$

Partial differential equations

Many linear partial differential equations of evolution type can be put in the following format: Let V be a Banach space (often a Hilbert space). Let $u_{0} \in V$. Find $u(t) \in V$ such that the mapping $t \mapsto u(t)$ is differentiable on $\{t>0\}$ and

$$
\begin{align*}
\frac{d u}{d t}(t) & =A u(t), \quad \text { for } t>0 \tag{1}\\
u(0) & =u_{0}
\end{align*}
$$

where A is now an unbounded linear operator, i.e. A is defined on a subspace $D(A) \subset V$ and is linear.

Partial differential equations

Many linear partial differential equations of evolution type can be put in the following format: Let V be a Banach space (often a Hilbert space). Let $u_{0} \in V$. Find $u(t) \in V$ such that the mapping $t \mapsto u(t)$ is differentiable on $\{t>0\}$ and

$$
\begin{align*}
\frac{d u}{d t}(t) & =A u(t), \text { for } t>0 \tag{1}\\
u(0) & =u_{0}
\end{align*}
$$

where A is now an unbounded linear operator, i.e. A is defined on a subspace $D(A) \subset V$ and is linear. The subspace $D(A)$ is called the domain of A.

Partial differential equations

Many linear partial differential equations of evolution type can be put in the following format: Let V be a Banach space (often a Hilbert space). Let $u_{0} \in V$. Find $u(t) \in V$ such that the mapping $t \mapsto u(t)$ is differentiable on $\{t>0\}$ and

$$
\begin{align*}
\frac{d u}{d t}(t) & =A u(t), \text { for } t>0 \tag{1}\\
u(0) & =u_{0}
\end{align*}
$$

where A is now an unbounded linear operator, i.e. A is defined on a subspace $D(A) \subset V$ and is linear. The subspace $D(A)$ is called the domain of A. Most often it is a dense subspace of V. In that case we say A is densely defined.

Partial differential equations

Many linear partial differential equations of evolution type can be put in the following format: Let V be a Banach space (often a Hilbert space). Let $u_{0} \in V$. Find $u(t) \in V$ such that the mapping $t \mapsto u(t)$ is differentiable on $\{t>0\}$ and

$$
\begin{align*}
\frac{d u}{d t}(t) & =A u(t), \text { for } t>0 \tag{1}\\
u(0) & =u_{0}
\end{align*}
$$

where A is now an unbounded linear operator, i.e. A is defined on a subspace $D(A) \subset V$ and is linear. The subspace $D(A)$ is called the domain of A. Most often it is a dense subspace of V. In that case we say A is densely defined. If the graph of A, defined by $G(A)=\{(u, A u) \mid u \in D(A)\}$, is closed in the product space, we say that A is a closed operator.

Partial differential equations

Many linear partial differential equations of evolution type can be put in the following format: Let V be a Banach space (often a Hilbert space). Let $u_{0} \in V$. Find $u(t) \in V$ such that the mapping $t \mapsto u(t)$ is differentiable on $\{t>0\}$ and

$$
\begin{align*}
\frac{d u}{d t}(t) & =A u(t), \quad \text { for } t>0 \tag{1}\\
u(0) & =u_{0}
\end{align*}
$$

where A is now an unbounded linear operator, i.e. A is defined on a subspace $D(A) \subset V$ and is linear. The subspace $D(A)$ is called the domain of A. Most often it is a dense subspace of V. In that case we say A is densely defined. If the graph of A, defined by $G(A)=\{(u, A u) \mid u \in D(A)\}$, is closed in the product space, we say that A is a closed operator. In general, we do not have a constant $C>0$ such that $\|A u\| \leq C\|u\|$ for every $u \in D(A)$, whence the name 'unbounded'. If there does exist such a constant, we say A is bounded. Of course, a continuous (a.k.a. bounded) linear operator on V, as we are all familiar with, is a particular case of an unbounded operator!!!

Example

Let $V=\mathcal{C}[0,1]$. Define $D(A)=\mathcal{C}^{1}[0,1]$ and, for $u \in D(A)$, define $A u$ by

$$
(A u)(t)=u^{\prime}(t), t \in[0,1]
$$

Then $A: D(A) \subset V \rightarrow V$ is an unbounded operator.

Example

Let $V=\mathcal{C}[0,1]$. Define $D(A)=\mathcal{C}^{1}[0,1]$ and, for $u \in D(A)$, define $A u$ by

$$
(A u)(t)=u^{\prime}(t), t \in[0,1] .
$$

Then $A: D(A) \subset V \rightarrow V$ is an unbounded operator. It is not bounded. For, if we set $u_{n}(t)=t^{n}$, then $A u_{n}(t)=n t^{n-1}$. Then $\left\|u_{n}\right\|=1$, while $\left\|A u_{n}\right\|=n$, for all n.

Example

Let $V=\mathcal{C}[0,1]$. Define $D(A)=\mathcal{C}^{1}[0,1]$ and, for $u \in D(A)$, define $A u$ by

$$
(A u)(t)=u^{\prime}(t), t \in[0,1]
$$

Then $A: D(A) \subset V \rightarrow V$ is an unbounded operator. It is not bounded. For, if we set $u_{n}(t)=t^{n}$, then $A u_{n}(t)=n t^{n-1}$. Then $\left\|u_{n}\right\|=1$, while $\left\|A u_{n}\right\|=n$, for all n. By Weierstrass' theorem, it is densely defined.

Example

Let $V=\mathcal{C}[0,1]$. Define $D(A)=\mathcal{C}^{1}[0,1]$ and, for $u \in D(A)$, define $A u$ by

$$
(A u)(t)=u^{\prime}(t), t \in[0,1]
$$

Then $A: D(A) \subset V \rightarrow V$ is an unbounded operator. It is not bounded. For, if we set $u_{n}(t)=t^{n}$, then $A u_{n}(t)=n t^{n-1}$. Then $\left\|u_{n}\right\|=1$, while $\left\|A u_{n}\right\|=n$, for all n. By Weierstrass' theorem, it is densely defined. It is surjective by the fundamental theorem of calculus.

Example

Let $V=\mathcal{C}[0,1]$. Define $D(A)=\mathcal{C}^{1}[0,1]$ and, for $u \in D(A)$, define $A u$ by

$$
(A u)(t)=u^{\prime}(t), t \in[0,1]
$$

Then $A: D(A) \subset V \rightarrow V$ is an unbounded operator. It is not bounded. For, if we set $u_{n}(t)=t^{n}$, then $A u_{n}(t)=n t^{n-1}$. Then $\left\|u_{n}\right\|=1$, while $\left\|A u_{n}\right\|=n$, for all n. By Weierstrass' theorem, it is densely defined. It is surjective by the fundamental theorem of calculus. The kernel is the space of constant functions.

Example

Let $V=\mathcal{C}[0,1]$. Define $D(A)=\mathcal{C}^{1}[0,1]$ and, for $u \in D(A)$, define $A u$ by

$$
(A u)(t)=u^{\prime}(t), t \in[0,1]
$$

Then $A: D(A) \subset V \rightarrow V$ is an unbounded operator. It is not bounded. For, if we set $u_{n}(t)=t^{n}$, then $A u_{n}(t)=n t^{n-1}$. Then $\left\|u_{n}\right\|=1$, while $\left\|A u_{n}\right\|=n$, for all n. By Weierstrass' theorem, it is densely defined. It is surjective by the fundamental theorem of calculus. The kernel is the space of constant functions. If $u_{n} \rightarrow u$ and $u_{n}^{\prime} \rightarrow v$ uniformly, where $\left\{u_{n}\right\}$ is a sequence in $D(A)$ and u and v are in V, we know that u is differentiable and that $u^{\prime}=v$. Thus, A is closed as well.

Since the initial value problem is linear and we expect the solution to be continuous with repect to the data, the mapping $u_{0} \mapsto u(t)$ must be continuous and linear for each t. Let us set $u(t)=S(t) u_{0}$. Thus, for each $t>0, S(t) \in \mathcal{L}(V)$.

Since the initial value problem is linear and we expect the solution to be continuous with repect to the data, the mapping $u_{0} \mapsto u(t)$ must be continuous and linear for each t. Let us set $u(t)=S(t) u_{0}$. Thus, for each $t>0, S(t) \in \mathcal{L}(V)$. Clearly $S(0)=I$, the identity map.

Since the initial value problem is linear and we expect the solution to be continuous with repect to the data, the mapping $u_{0} \mapsto u(t)$ must be continuous and linear for each t. Let us set $u(t)=S(t) u_{0}$. Thus, for each $t>0, S(t) \in \mathcal{L}(V)$. Clearly $S(0)=I$, the identity map. Finally, from the uniqueness of the solution, we need to have

$$
S\left(t_{1}\right)\left(S\left(t_{2}\right) u_{0}\right)=S\left(t_{1}+t_{2}\right) u_{0} .
$$

This leads us to the following definition:

C_{0} - Semigroups

Definition

A family of continuous linear operators $\{S(t)\}_{t \geq 0}$ on a Banach space V, is said to be a C_{0}-semigroup if the following conditions are verified: (i) $S(0)=1$;

C_{0} - Semigroups

Definition

A family of continuous linear operators $\{S(t)\}_{t \geq 0}$ on a Banach space V, is said to be a C_{0}-semigroup if the following conditions are verified: (i) $S(0)=1$;
(ii) $S\left(t_{1}\right) S\left(t_{2}\right)=S\left(t_{1}+t_{2}\right)$ for all $t_{1}, t_{2} \geq 0$;

C_{0} - Semigroups

Definition

A family of continuous linear operators $\{S(t)\}_{t \geq 0}$ on a Banach space V, is said to be a C_{0}-semigroup if the following conditions are verified:
(i) $S(0)=1$;
(ii) $S\left(t_{1}\right) S\left(t_{2}\right)=S\left(t_{1}+t_{2}\right)$ for all $t_{1}, t_{2} \geq 0$;
(iii)

$$
\lim _{t \downarrow 0} S(t) u=u
$$

for every $u \in V$. \square

C_{0} - Semigroups

Definition

A family of continuous linear operators $\{S(t)\}_{t \geq 0}$ on a Banach space V, is said to be a C_{0}-semigroup if the following conditions are verified:
(i) $S(0)=1$;
(ii) $S\left(t_{1}\right) S\left(t_{2}\right)=S\left(t_{1}+t_{2}\right)$ for all $t_{1}, t_{2} \geq 0$; (iii)

$$
\lim _{t \downarrow 0} S(t) u=u
$$

for every $u \in V$. \square
Remark The second condition is the semigroup property. The continuity assumption in (iii) gives rise to C_{0} in the name. \square

Examples

Example If $A \in \mathcal{L}(V)$, then $S(t)=e^{t A}$ defines a semigroup for $t \geq 0$. In fact, $S(t)$ is defined for all $t \in \mathbb{R}$ and forms a group. Example (Translation semigroup) Let V be the space of bounded and uniformly continuous real-valued functions defined on the real line. For $f \in V$, define

$$
S(t) f(s)=f(t+s), s \in \mathbb{R}
$$

Again $\{S(t)\}_{t \geq 0}$ defines a semigroup. In this case also we have a group since $S(t)$ can be defined for all $t \in \mathbb{R}$.

Infinitesimal generator

Given a C_{0}-semigroup $\{S(t)\}_{t \geq 0}$ on a Banach space V, we define an unbounded operator, A, called the infinitesimal generator of the semigroup as follows:

$$
D(A)=\left\{u \in V \left\lvert\, \begin{array}{l|l}
\lim _{t \downarrow 0} \frac{S(t) u-u}{t} \text { exists }
\end{array}\right.\right\} .
$$

Infinitesimal generator

Given a C_{0}-semigroup $\{S(t)\}_{t \geq 0}$ on a Banach space V, we define an unbounded operator, A, called the infinitesimal generator of the semigroup as follows:

$$
D(A)=\left\{u \in V \left\lvert\, \begin{array}{l|l}
\lim _{t \downarrow 0} \frac{S(t) u-u}{t} \text { exists }
\end{array}\right.\right\} .
$$

For $u \in D(A)$, we set

$$
A u=\lim _{t \downarrow 0} \frac{S(t) u-u}{t}
$$

Infinitesimal generator

Given a C_{0}-semigroup $\{S(t)\}_{t \geq 0}$ on a Banach space V, we define an unbounded operator, A, called the infinitesimal generator of the semigroup as follows:

$$
D(A)=\left\{u \in V \left\lvert\, \begin{array}{l|l}
\lim _{t \downarrow 0} \frac{S(t) u-u}{t} \text { exists }
\end{array}\right.\right\} .
$$

For $u \in D(A)$, we set

$$
A u=\lim _{t \downarrow 0} \frac{S(t) u-u}{t}
$$

Example If $A \in \mathcal{L}(V)$, then the infinitesimal generator of $\left\{e^{t A}\right\}_{t \geq 0}$ is defined on all of V and is equal to A.

Infinitesimal generator

Given a C_{0}-semigroup $\{S(t)\}_{t \geq 0}$ on a Banach space V, we define an unbounded operator, A, called the infinitesimal generator of the semigroup as follows:

$$
D(A)=\left\{u \in V \left\lvert\, \lim _{t \downarrow 0} \frac{S(t) u-u}{t}\right. \text { exists }\right\} .
$$

For $u \in D(A)$, we set

$$
A u=\lim _{t \downarrow 0} \frac{S(t) u-u}{t}
$$

Example If $A \in \mathcal{L}(V)$, then the infinitesimal generator of $\left\{e^{t A}\right\}_{t \geq 0}$ is defined on all of V and is equal to A.
Example If V is the space of bounded uniformly continuous real-valued functions defined on \mathbb{R}, then the domain of the infinitesimal generator of the translation semigroup defined earlier is the subspace of continuously differentiable functions in V and such that the derivative is also in V; for such functions $u, A u=u^{\prime}$.

Infinitesimal generator, contd.

Theorem

Let V be a Banach space and let $\{S(t)\}_{t \geq 0}$ be a C C_{0}-semigroup defined on V. Let A be the infinitesimal generator of this semigroup. Then, if $u_{0} \in D(A)$, the mapping $t \mapsto S(t) u_{0}$ is continuously differentiable. Further

$$
\frac{d\left(S(t) u_{0}\right)}{d t}(t)=A S(t) u_{0}=S(t) A u_{0}
$$

Infinitesimal generator, contd.

Theorem

Let V be a Banach space and let $\{S(t)\}_{t \geq 0}$ be a C C_{0}-semigroup defined on V. Let A be the infinitesimal generator of this semigroup. Then, if $u_{0} \in D(A)$, the mapping $t \mapsto S(t) u_{0}$ is continuously differentiable. Further

$$
\frac{d\left(S(t) u_{0}\right)}{d t}(t)=A S(t) u_{0}=S(t) A u_{0}
$$

Thus, if the initial value u_{0} is in $D(A)$, then the initial value problem (1) has a (unique) solution $u(t)=S(t) u_{0}$.

Consider the translation semigroup and its infinitesimal generator. Let u_{0} be a continuously differentiable, uniformly continuous and bounded real-valued function defined on \mathbb{R}, i.e. $u_{0} \in D(A)$, where A is the infinitesimal generator. For $u \in D(A)$, recall that $A u=u^{\prime}$. Thus the initial value problem (1) reads as

$$
\frac{\partial u}{\partial t}(t, x)=\frac{\partial u}{\partial x}(t, x), \text { for } t>0, u(0, x)=u_{0}(x)
$$

Consider the translation semigroup and its infinitesimal generator. Let u_{0} be a continuously differentiable, uniformly continuous and bounded real-valued function defined on \mathbb{R}, i.e. $u_{0} \in D(A)$, where A is the infinitesimal generator. For $u \in D(A)$, recall that $A u=u^{\prime}$. Thus the initial value problem (1) reads as

$$
\frac{\partial u}{\partial t}(t, x)=\frac{\partial u}{\partial x}(t, x), \text { for } t>0, u(0, x)=u_{0}(x)
$$

Then the solution is given by $u(t, x)=u_{0}(t+x)$. This is called the transport equation. \square

Given an initial value problem (1), the question, therefore, is whether A is the infinitesimal generator of a C_{0}-semigroup. This is answered by the Hille-Yosida theorem, which characterises such operators. The infinitesimal generator of a C_{0}-semigroup will always be closed and densely defined with additional spectral properties.

Given an initial value problem (1), the question, therefore, is whether A is the infinitesimal generator of a C_{0}-semigroup. This is answered by the Hille-Yosida theorem, which characterises such operators. The infinitesimal generator of a C_{0}-semigroup will always be closed and densely defined with additional spectral properties.
A special case of the above theorem in Hilbert spaces is particularly useful. Let H be a Hilbert space and let $A: D(A) \subset H \rightarrow H$ be an unbounded operator. It is said to be dissipative if $(A u, u) \leq 0$ for every $u \in D(A)$. In addition, if the range of $I-A=H$, i.e. for every $y \in H$, there exists $u \in D(A)$ such that $u-A u=y$, it is said to be maximal dissipative. We can show that maximal dissipative operators are the infinitesimal generators of contraction semigroups, i.e. the semigroup $\{S(t)\}_{t \geq 0}$ generated by A is such that $\|S(t)\| \leq 1$ for every $t \geq 0$.

Given an initial value problem (1), the question, therefore, is whether A is the infinitesimal generator of a C_{0}-semigroup. This is answered by the Hille-Yosida theorem, which characterises such operators. The infinitesimal generator of a C_{0}-semigroup will always be closed and densely defined with additional spectral properties.
A special case of the above theorem in Hilbert spaces is particularly useful. Let H be a Hilbert space and let $A: D(A) \subset H \rightarrow H$ be an unbounded operator. It is said to be dissipative if $(A u, u) \leq 0$ for every $u \in D(A)$. In addition, if the range of $I-A=H$, i.e. for every $y \in H$, there exists $u \in D(A)$ such that $u-A u=y$, it is said to be maximal dissipative. We can show that maximal dissipative operators are the infinitesimal generators of contraction semigroups, i.e. the semigroup $\{S(t)\}_{t \geq 0}$ generated by A is such that $\|S(t)\| \leq 1$ for every $t \geq 0$. The heat equation and the wave equation can, in particular, be cast in this form involving maximal dissipative operators.

Control Problems

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_{0}-semigroup $\{S(t)\}_{t \geq 0}$ on Z. Let U be a Hilbert space called the space of controls and let $B: U \rightarrow Z$. Let $\zeta \in Z$. Consider the problem:

Control Problems

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_{0}-semigroup $\{S(t)\}_{t \geq 0}$ on Z. Let U be a Hilbert space called the space of controls and let $B: U \rightarrow Z$. Let $\zeta \in Z$. Consider the problem:

$$
\begin{align*}
z^{\prime}(t) & =A z(t)+B u(t), 0<t<T \tag{2}\\
z(0) & =\zeta .
\end{align*}
$$

Control Problems

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_{0}-semigroup $\{S(t)\}_{t \geq 0}$ on Z. Let U be a Hilbert space called the space of controls and let $B: U \rightarrow Z$. Let $\zeta \in Z$. Consider the problem:

$$
\begin{align*}
z^{\prime}(t) & =A z(t)+B u(t), 0<t<T \\
z(0) & =\zeta . \tag{2}
\end{align*}
$$

The space Z is called the state space and the solution of (2), $z \in L^{2}(0, T ; Z)$, is the state of the system. The operator B is called the control operator and u is the control applied to influence the evolution of the solution of (2). We may have several objectives from the point of view of control of the above system.

Control Problems

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_{0}-semigroup $\{S(t)\}_{t \geq 0}$ on Z. Let U be a Hilbert space called the space of controls and let $B: U \rightarrow Z$. Let $\zeta \in Z$. Consider the problem:

$$
\begin{align*}
z^{\prime}(t) & =A z(t)+B u(t), 0<t<T \\
z(0) & =\zeta . \tag{2}
\end{align*}
$$

The space Z is called the state space and the solution of (2), $z \in L^{2}(0, T ; Z)$, is the state of the system. The operator B is called the control operator and u is the control applied to influence the evolution of the solution of (2). We may have several objectives from the point of view of control of the above system.
For simplicity and uniformity of notation, we will denote the semigroup generated by A by $\left\{e^{t A}\right\}_{t \geq 0}$.

Controllability

- Exact controllability

The system (2) is exactly controllable in time $T>0$, if for any initial data ζ, and any given element ζ_{1}, there exists a control $u \in L^{2}(0, T ; U)$ such that $z(T)=\zeta_{1}$.

Controllability

- Exact controllability

The system (2) is exactly controllable in time $T>0$, if for any initial data ζ, and any given element ζ_{1}, there exists a control $u \in L^{2}(0, T ; U)$ such that $z(T)=\zeta_{1}$. This happens if, and only if,

$$
\int_{0}^{T}\left\|B^{*} e^{t A^{*}} \zeta\right\|_{Z}^{2} d t \geq \alpha\|\zeta\|_{Z}^{2} \text { for all } \zeta \in Z
$$

Controllability

- Exact controllability

The system (2) is exactly controllable in time $T>0$, if for any initial data ζ, and any given element ζ_{1}, there exists a control $u \in L^{2}(0, T ; U)$ such that $z(T)=\zeta_{1}$. This happens if, and only if,

$$
\int_{0}^{T}\left\|B^{*} e^{t A^{*}} \zeta\right\|_{Z}^{2} d t \geq \alpha\|\zeta\|_{Z}^{2} \text { for all } \zeta \in Z
$$

- Approximate controllability

For every pair $\left(\zeta, \zeta_{1}\right)$ as above there exists a control u such that $z(T)$ is as close to ζ_{1} as we please.

Controllability

- Exact controllability

The system (2) is exactly controllable in time $T>0$, if for any initial data ζ, and any given element ζ_{1}, there exists a control $u \in L^{2}(0, T ; U)$ such that $z(T)=\zeta_{1}$. This happens if, and only if,

$$
\int_{0}^{T}\left\|B^{*} e^{t A^{*}} \zeta\right\|_{Z}^{2} d t \geq \alpha\|\zeta\|_{Z}^{2} \text { for all } \zeta \in Z
$$

- Approximate controllability

For every pair $\left(\zeta, \zeta_{1}\right)$ as above there exists a control u such that $z(T)$ is as close to ζ_{1} as we please.

- Null controllability

For every initial value ζ, there exists a control u such that $z(T)=0$.

Controllability

- Exact controllability

The system (2) is exactly controllable in time $T>0$, if for any initial data ζ, and any given element ζ_{1}, there exists a control $u \in L^{2}(0, T ; U)$ such that $z(T)=\zeta_{1}$. This happens if, and only if,

$$
\int_{0}^{T}\left\|B^{*} e^{t A^{*}} \zeta\right\|_{Z}^{2} d t \geq \alpha\|\zeta\|_{Z}^{2} \text { for all } \zeta \in Z
$$

- Approximate controllability

For every pair $\left(\zeta, \zeta_{1}\right)$ as above there exists a control u such that $z(T)$ is as close to ζ_{1} as we please.

- Null controllability

For every initial value ζ, there exists a control u such that $z(T)=0$. This happens if, and only if, for all $\zeta \in Z$,

$$
\int_{0}^{T}\left\|B^{*} e^{t A^{*}} \zeta\right\|_{Z}^{2} d t \geq C\left\|e^{T A^{*}} \zeta\right\|_{Z}^{2}
$$

All three notions are equivalent if the spaces are finite dimensional. This is not true in infinite dimensions. Of course exact controllability, trivially, implies the other two.

All three notions are equivalent if the spaces are finite dimensional. This is not true in infinite dimensions. Of course exact controllability, trivially, implies the other two.
The wave equation is an example of an exactly controllable system. For instance, a vibrating string of length L can be controlled exactly i.e. starting from any initial shape, it can be brought to any other shape, by controlling the boundary conditions at the two end points, in any time $T>L$.

All three notions are equivalent if the spaces are finite dimensional. This is not true in infinite dimensions. Of course exact controllability, trivially, implies the other two.
The wave equation is an example of an exactly controllable system. For instance, a vibrating string of length L can be controlled exactly i.e. starting from any initial shape, it can be brought to any other shape, by controlling the boundary conditions at the two end points, in any time $T>L$.
The heat equation is an example of an approximately controllable system. It cannot be exactly controllable because, given any initial data, however rough, the solution instantaneously becomes smooth (analytic). Unlike the wave equation, which can be solved backwards (the semigroup in this case is a group), the heat equation cannot be solved backwards.

Optimal Control: Linear Regulator Problem

Let Y be a Hilbert space, called the space of observation. Let $C: Z \rightarrow Y$ be a bounded linear operator. Let $\zeta \in Z$ be fixed. Let $z(t)$ be the state, i.e. the solution of (2). Let $y_{d} \in Y$ be given. It may be, say, the observation which one 'desires' to make. We then try to come as close to this by penalization, in the least squares sense. In other words, we wish to minimize $\int_{0}^{T}\left\|C z(t)-y_{d}\right\|_{Y}^{2} d t$. However, to arrive at $z(t)$, we have exercised a control u which contributes to the cost.

Optimal Control: Linear Regulator Problem

Let Y be a Hilbert space, called the space of observation. Let
$C: Z \rightarrow Y$ be a bounded linear operator. Let $\zeta \in Z$ be fixed. Let $z(t)$ be the state, i.e. the solution of (2). Let $y_{d} \in Y$ be given. It may be, say, the observation which one 'desires' to make. We then try to come as close to this by penalization, in the least squares sense. In other words, we wish to minimize $\int_{0}^{T}\left\|C z(t)-y_{d}\right\|_{Y}^{2} d t$. However, to arrive at $z(t)$, we have exercised a control u which contributes to the cost. Thus, we define the cost functional

$$
J(z, u)=\frac{1}{2} \int_{0}^{T}\left\|C z(t)-y_{d}\right\|_{Y}^{2} d t+\frac{1}{2} \int_{0}^{T}\|u(t)\|_{U}^{2} d t
$$

Optimal Control: Linear Regulator Problem

Let Y be a Hilbert space, called the space of observation. Let
$C: Z \rightarrow Y$ be a bounded linear operator. Let $\zeta \in Z$ be fixed. Let $z(t)$ be the state, i.e. the solution of (2). Let $y_{d} \in Y$ be given. It may be, say, the observation which one 'desires' to make. We then try to come as close to this by penalization, in the least squares sense. In other words, we wish to minimize $\int_{0}^{T}\left\|C z(t)-y_{d}\right\|_{Y}^{2} d t$. However, to arrive at $z(t)$, we have exercised a control u which contributes to the cost. Thus, we define the cost functional

$$
J(z, u)=\frac{1}{2} \int_{0}^{T}\left\|C z(t)-y_{d}\right\|_{Y}^{2} d t+\frac{1}{2} \int_{0}^{T}\|u(t)\|_{U}^{2} d t
$$

Problem: Find $u \in L^{2}(0, T ; U)$ such that J is minimized.
This is called an optimal control problem with finite time horizon, and the optimal solution u is called the optimal control.

Optimal Control: infinite time horizon

Let $\zeta \in Z$ be fixed. Let $z(t)$ be the state, i.e. the solution of (2). Define the cost functional

$$
J(z, u)=\frac{1}{2} \int_{0}^{\infty}\left\|C z(t)-y_{d}\right\|_{Y}^{2} d t+\frac{1}{2} \int_{0}^{\infty}\|u(t)\|_{U}^{2} d t
$$

Problem: Find $u \in L^{2}(0, \infty ; U)$ such that J is minimized.

Optimal Control: infinite time horizon

Let $\zeta \in Z$ be fixed. Let $z(t)$ be the state, i.e. the solution of (2). Define the cost functional

$$
J(z, u)=\frac{1}{2} \int_{0}^{\infty}\left\|C z(t)-y_{d}\right\|_{Y}^{2} d t+\frac{1}{2} \int_{0}^{\infty}\|u(t)\|_{U}^{2} d t
$$

Problem: Find $u \in L^{2}(0, \infty ; U)$ such that J is minimized.

Finite Cost Condition

For every $\zeta \in Z$, there exists a control $u \in L^{2}(0, \infty ; U)$ such that $J(z, u)<\infty$.

If FCC holds then there exists a unique optimal control which minimizes J.

If FCC holds then there exists a unique optimal control which minimizes J. Further, there exists $P \in \mathcal{L}(Z)$ such that

$$
P=P^{*} \geq 0
$$

and P satisfies the algebraic Riccati equation

$$
A^{*} P+P A-P B B^{*} P+C^{*} C=0
$$

If FCC holds then there exists a unique optimal control which minimizes J. Further, there exists $P \in \mathcal{L}(Z)$ such that

$$
P=P^{*} \geq 0
$$

and P satisfies the algebraic Riccati equation

$$
A^{*} P+P A-P B B^{*} P+C^{*} C=0
$$

We also have that

$$
\min J=\frac{1}{2}(P \zeta, \zeta)_{Z}
$$

If FCC holds then there exists a unique optimal control which minimizes J. Further, there exists $P \in \mathcal{L}(Z)$ such that

$$
P=P^{*} \geq 0
$$

and P satisfies the algebraic Riccati equation

$$
A^{*} P+P A-P B B^{*} P+C^{*} C=0
$$

We also have that

$$
\min J=\frac{1}{2}(P \zeta, \zeta)_{Z}
$$

Moreover, the optimal control is given in feedback form

$$
u(t)=-B^{*} P z(t), t>0
$$

If FCC holds then there exists a unique optimal control which minimizes J. Further, there exists $P \in \mathcal{L}(Z)$ such that

$$
P=P^{*} \geq 0
$$

and P satisfies the algebraic Riccati equation

$$
A^{*} P+P A-P B B^{*} P+C^{*} C=0
$$

We also have that

$$
\min J=\frac{1}{2}(P \zeta, \zeta)_{Z}
$$

Moreover, the optimal control is given in feedback form

$$
u(t)=-B^{*} P z(t), t>0
$$

Then (2) becomes

$$
z^{\prime}(t)=\left(A-B B^{*} P\right) z(t), t>0, \text { and } z(0)=\zeta
$$

In the case of a finite time horizon, defined by T, we have a differential Riccati equation. Given the system (2), we have the dual system:

$$
\begin{aligned}
-p^{\prime}(t) & =A^{*} p(t)+C^{*} C z, 0<t<T \\
p(T) & =C^{*} C z(T)
\end{aligned}
$$

In the case of a finite time horizon, defined by T, we have a differential Riccati equation. Given the system (2), we have the dual system:

$$
\begin{aligned}
-p^{\prime}(t) & =A^{*} p(t)+C^{*} C z, 0<t<T \\
p(T) & =C^{*} C z(T)
\end{aligned}
$$

Again

$$
u(t)=-B^{*} p(t)
$$

We can write $u(t)=-B^{*} P(t) z(t)$, where $P=P^{*} \geq 0$ and

In the case of a finite time horizon, defined by T, we have a differential Riccati equation. Given the system (2), we have the dual system:

$$
\begin{aligned}
-p^{\prime}(t) & =A^{*} p(t)+C^{*} C z, \quad 0<t<T \\
p(T) & =C^{*} C z(T) .
\end{aligned}
$$

Again

$$
u(t)=-B^{*} p(t)
$$

We can write $u(t)=-B^{*} P(t) z(t)$, where $P=P^{*} \geq 0$ and

$$
P^{\prime}(t)+A^{*} P(t)+P(t) A-P(t) B B^{*} P(t)+C^{*} C=0
$$

and

$$
P(T)=0
$$

In the case of a finite time horizon, defined by T, we have a differential Riccati equation. Given the system (2), we have the dual system:

$$
\begin{aligned}
-p^{\prime}(t) & =A^{*} p(t)+C^{*} C z, \quad 0<t<T \\
p(T) & =C^{*} C z(T) .
\end{aligned}
$$

Again

$$
u(t)=-B^{*} p(t)
$$

We can write $u(t)=-B^{*} P(t) z(t)$, where $P=P^{*} \geq 0$ and

$$
P^{\prime}(t)+A^{*} P(t)+P(t) A-P(t) B B^{*} P(t)+C^{*} C=0
$$

and

$$
P(T)=0
$$

We have

$$
P(t) \zeta=p(0)
$$

- The (unbounded) operator A is said to be exponentially stable if

$$
\left\|e^{t A}\right\|_{\mathcal{L}(Z)} \leq M e^{-\alpha t}
$$

for some constants $M>0$ and $\alpha>0$.

- The (unbounded) operator A is said to be exponentially stable if

$$
\left\|e^{t A}\right\|_{\mathcal{L}(Z)} \leq M e^{-\alpha t}
$$

for some constants $M>0$ and $\alpha>0$. If A is a $N \times N$ matrix, then $\left\{e^{t A}\right\}_{t \geq 0}$ is exponentially stable if, and only if, all the eigenvalues of A have negative real part.

- The (unbounded) operator A is said to be exponentially stable if

$$
\left\|e^{t A}\right\|_{\mathcal{L}(Z)} \leq M e^{-\alpha t}
$$

for some constants $M>0$ and $\alpha>0$. If A is a $N \times N$ matrix, then $\left\{e^{t A}\right\}_{t \geq 0}$ is exponentially stable if, and only if, all the eigenvalues of A have negative real part.

- The pair (A, C) is said to be exponentially detectable if there exists $L \in \mathcal{L}(Y, Z)$ such that the operator $A+L C$, with domain $D(A)$ is exponentially stable.
- The (unbounded) operator A is said to be exponentially stable if

$$
\left\|e^{t A}\right\|_{\mathcal{L}(Z)} \leq M e^{-\alpha t}
$$

for some constants $M>0$ and $\alpha>0$. If A is a $N \times N$ matrix, then $\left\{e^{t A}\right\}_{t \geq 0}$ is exponentially stable if, and only if, all the eigenvalues of A have negative real part.

- The pair (A, C) is said to be exponentially detectable if there exists $L \in \mathcal{L}(Y, Z)$ such that the operator $A+L C$, with domain $D(A)$ is exponentially stable.
- If A is exponentially stable, then FCC automatically holds.
- If FCC holds and the pair (A, C) is exponentially detectable, then the solution to the algebraic Riccati equation is unique.

Numerical Approximation

Let A_{h}, B_{h}, C_{h} be finite dimensional approximations to A, B, C respectively using some numerical scheme (eg. Finite element method).

Numerical Approximation

Let A_{h}, B_{h}, C_{h} be finite dimensional approximations to A, B, C respectively using some numerical scheme (eg. Finite element method). Problem: Find $P_{h} \in \mathcal{L}\left(\mathbb{R}^{N}\right)$ such that $P_{h}=P_{h}^{*} \geq 0$ and

$$
A_{h}^{*} P_{h}+P_{h} A_{h}-P_{h} B_{h} B_{h}^{*} P_{h}+C_{h}^{*} C_{h}=0
$$

Numerical Approximation

Let A_{h}, B_{h}, C_{h} be finite dimensional approximations to A, B, C respectively using some numerical scheme (eg. Finite element method). Problem: Find $P_{h} \in \mathcal{L}\left(\mathbb{R}^{N}\right)$ such that $P_{h}=P_{h}^{*} \geq 0$ and

$$
A_{h}^{*} P_{h}+P_{h} A_{h}-P_{h} B_{h} B_{h}^{*} P_{h}+C_{h}^{*} C_{h}=0
$$

For control of fluid flows or thermal processes, N is very large. Solution of above equation very difficult.

Numerical Approximation

Let A_{h}, B_{h}, C_{h} be finite dimensional approximations to A, B, C respectively using some numerical scheme (eg. Finite element method). Problem: Find $P_{h} \in \mathcal{L}\left(\mathbb{R}^{N}\right)$ such that $P_{h}=P_{h}^{*} \geq 0$ and

$$
A_{h}^{*} P_{h}+P_{h} A_{h}-P_{h} B_{h} B_{h}^{*} P_{h}+C_{h}^{*} C_{h}=0
$$

For control of fluid flows or thermal processes, N is very large. Solution of above equation very difficult.
Newton-Kleinmann algorithm, for convergence, needs an initial guess P_{0} such that $A_{h}-B_{h} B_{h}^{*} P_{0}$ is exponentially stable.

Numerical Approximation

Let A_{h}, B_{h}, C_{h} be finite dimensional approximations to A, B, C respectively using some numerical scheme (eg. Finite element method). Problem: Find $P_{h} \in \mathcal{L}\left(\mathbb{R}^{N}\right)$ such that $P_{h}=P_{h}^{*} \geq 0$ and

$$
A_{h}^{*} P_{h}+P_{h} A_{h}-P_{h} B_{h} B_{h}^{*} P_{h}+C_{h}^{*} C_{h}=0
$$

For control of fluid flows or thermal processes, N is very large. Solution of above equation very difficult.
Newton-Kleinmann algorithm, for convergence, needs an initial guess P_{0} such that $A_{h}-B_{h} B_{h}^{*} P_{0}$ is exponentially stable.
Benner: Choose P_{0} such that $P_{0}=P_{0}^{*} \geq 0$ solution to the degenerate algebraic Riccati equation:

$$
A_{h}^{*} P+P A_{h}-P B_{h} B_{h}^{*} P=0
$$

which is also such that $A_{h}-B_{h} B_{h}^{*} P_{0}$ is exponentially stable.

We are interested in the following problem:
Find $P \in \mathcal{L}(Z)$ such that $P=P^{*} \geq 0$ such that

$$
A^{*} P+P A-P B B^{*} P=0
$$

and such that $A-B B^{*} P$ is exponentially stable.

We are interested in the following problem:
Find $P \in \mathcal{L}(Z)$ such that $P=P^{*} \geq 0$ such that

$$
A^{*} P+P A-P B B^{*} P=0
$$

and such that $A-B B^{*} P$ is exponentially stable.
Let us assume for the time being that the spaces Z and U and Y are finite dimensional.

A Comparison Principle

Lemma

Let $C_{i} \in \mathcal{L}(Z, Y)$ for $i=1,2$ be such that $C_{1}^{*} C_{1} \geq C_{2}^{*} C_{2}$ Let $P_{i} \in \mathcal{L}(Z)$ be such that $P_{i}=P_{i}^{*} \geq 0$ and

$$
A^{*} P_{i}+P_{i} A-P_{i} B B^{*} P_{i}+C_{i}^{*} C_{i}=0
$$

for $i=1$, 2. If $A-B B^{*} P_{1}$ is exponentially stable, then $P_{1} \geq P_{2} \square$

A Comparison Principle

Lemma

Let $C_{i} \in \mathcal{L}(Z, Y)$ for $i=1,2$ be such that $C_{1}^{*} C_{1} \geq C_{2}^{*} C_{2}$ Let $P_{i} \in \mathcal{L}(Z)$ be such that $P_{i}=P_{i}^{*} \geq 0$ and

$$
A^{*} P_{i}+P_{i} A-P_{i} B B^{*} P_{i}+C_{i}^{*} C_{i}=0
$$

for $i=1$, 2. If $A-B B^{*} P_{1}$ is exponentially stable, then $P_{1} \geq P_{2} \square$

Corollary

The algebraic and degenerate algebraic Riccati equations admit at most one solution P such that $A-B B^{*} P$ is exponentially stable. In particular, if A is itself exponentially stable, then the degenerate equation has no non-trivial solutions such that $A-B B^{*} P$ is exponentially stable. \square

A Special Case

Theorem

The following are equivalent:
(i) The operator $-A$ is exponentially stable and there exists $\alpha>0$ such that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|B^{*} e^{-t A^{*}} z\right\|_{Z}^{2} d t \geq \alpha\|z\|_{Z}^{2} \tag{3}
\end{equation*}
$$

for all $z \in Z$.

A Special Case

Theorem

The following are equivalent:
(i) The operator $-A$ is exponentially stable and there exists $\alpha>0$ such that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|B^{*} e^{-t A^{*}} z\right\|_{Z}^{2} d t \geq \alpha\|z\|_{Z}^{2} \tag{3}
\end{equation*}
$$

for all $z \in Z$.
(ii) The degenerate algebraic Riccati equation admits solution $P \in \mathcal{L}(Z)$ which is invertible and such that $A-B B^{*} P$ is exponentially stable.

A Special Case

Theorem

The following are equivalent:
(i) The operator $-A$ is exponentially stable and there exists $\alpha>0$ such that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|B^{*} e^{-t A^{*}} z\right\|_{Z}^{2} d t \geq \alpha\|z\|_{Z}^{2} \tag{3}
\end{equation*}
$$

for all $z \in Z$.
(ii) The degenerate algebraic Riccati equation admits solution $P \in \mathcal{L}(Z)$ which is invertible and such that $A-B B^{*} P$ is exponentially stable.

Proof: Step 1: If $-A$ is exponentially stable and (3) holds,

$$
Q=\int_{0}^{\infty} e^{-t A} B B^{*} e^{-t A^{*}} d t
$$

is well defined and $Q=Q^{*}$. Further, for any $z \in Z$, (3) implies that

$$
(Q z, z)_{z} \geq \alpha\|z\|_{z}^{2}
$$

Thus O is invertible and $O>0$

Step 2. Let $Q(t)=e^{-t A} B B^{*} e^{-t A^{*}}$. Then

$$
B B^{*}=Q(0)=-\int_{0}^{\infty} \frac{d}{d t} Q(t) d t
$$

and so we deduce that

$$
A Q+Q A^{*}=B B^{*}
$$

Set $P=Q^{-1}$.
Multiplying both sides of the equationby P, we get that P satisfies the degenerate equation.

Step 2. Let $Q(t)=e^{-t A} B B^{*} e^{-t A^{*}}$. Then

$$
B B^{*}=Q(0)=-\int_{0}^{\infty} \frac{d}{d t} Q(t) d t
$$

and so we deduce that

$$
A Q+Q A^{*}=B B^{*}
$$

Set $P=Q^{-1}$.
Multiplying both sides of the equationby P, we get that P satisfies the degenerate equation.
Step 3. Since P is invertible, and solves the degenerate equation, we see that

$$
P\left(A-B B^{*} P\right) P^{-1}=-A^{*}
$$

and the RHS is, by assumption, also exponentially stable. Thus $A-B B^{*} P$ is also exponentially stable.
Step 4. The converse is proved by essentially retracing this proof. \square

Remark 1. The operator Q is the familiar Grammian associated to the system and $A Q+Q A^{*}=B B^{*}$ is the Lyapunov equation.

Remark 1. The operator Q is the familiar Grammian associated to the system and $A Q+Q A^{*}=B B^{*}$ is the Lyapunov equation. Remark 2. If the pair $(-A, B)$ is exactly controllable in some time $T>0$, then there exists $\alpha>0$ such that

$$
\int_{0}^{T}\left\|B^{*} e^{-t A^{*}} z\right\|_{Z}^{2} d t \geq \alpha\|z\|_{Z}^{2}
$$

for all $z \in Z$ and so (3) is also true. Thus, the above theorem is applicable if $-A$ is exponentially stable and the pair $(-A, B)$ is exactly controllable.

The General Case

Henceforth, we will assume the following to hold:
(H) There exist subspaces Z_{s} and Z_{u} of Z such that
(i) $Z=Z_{s} \oplus Z_{u}$.
(ii) Z_{s} and Z_{u} are invariant under A.
(iii) The restriction of A to Z_{s} is exponentially stable.
(iv) The restriction of $-A$ to Z_{u} is exponentially stable.

The General Case

Henceforth, we will assume the following to hold:
(H) There exist subspaces Z_{s} and Z_{u} of Z such that
(i) $Z=Z_{s} \oplus Z_{u}$.
(ii) Z_{s} and Z_{u} are invariant under A.
(iii) The restriction of A to Z_{s} is exponentially stable.
(iv) The restriction of $-A$ to Z_{u} is exponentially stable.

Example The matrix A has no eigenvalues on the imaginary axis. Then we can find invariant subspaces Z_{s} and Z_{U} such that all the eigenvalues of the restriction of A to Z_{s} are with negative real part and all the eigenvalues of the restriction of A to Z_{u} have positive real part. \square

Let $\pi_{s}: Z \rightarrow Z_{s}$ and $\pi_{u}: Z \rightarrow Z_{u}$ be the canonical projections with respect to this decomposition of Z.

$$
\begin{aligned}
\pi_{u} A=A \pi_{u} & =\pi_{u} A \pi_{u} \\
\pi_{u}+\pi_{s} & =I
\end{aligned}
$$

Let $\pi_{s}: Z \rightarrow Z_{s}$ and $\pi_{u}: Z \rightarrow Z_{U}$ be the canonical projections with respect to this decomposition of Z.

$$
\begin{aligned}
\pi_{u} A=A \pi_{u} & =\pi_{u} A \pi_{u} \\
\pi_{u}+\pi_{s} & =1
\end{aligned}
$$

Assume that the pair $\left(\pi_{u} A, \pi_{u} B\right)$ is such that there exists $\alpha>0$ satisfying:

$$
\begin{equation*}
\int_{0}^{\infty}\left\|\left(\pi_{u} B\right)^{*} e^{-t\left(\pi_{u} A\right)^{*}} z\right\|_{Z}^{2} d t \geq \alpha\|z\|_{Z}^{2} \tag{4}
\end{equation*}
$$

for all $z \in Z_{u}$.

Let $\pi_{s}: Z \rightarrow Z_{s}$ and $\pi_{u}: Z \rightarrow Z_{U}$ be the canonical projections with respect to this decomposition of Z.

$$
\begin{aligned}
\pi_{u} A=A \pi_{u} & =\pi_{u} A \pi_{u} \\
\pi_{u}+\pi_{s} & =1
\end{aligned}
$$

Assume that the pair $\left(\pi_{u} A, \pi_{u} B\right)$ is such that there exists $\alpha>0$ satisfying:

$$
\begin{equation*}
\int_{0}^{\infty}\left\|\left(\pi_{u} B\right)^{*} e^{-t\left(\pi_{u} A\right)^{*}} z\right\|_{Z}^{2} d t \geq \alpha\|z\|_{Z}^{2} \tag{4}
\end{equation*}
$$

for all $z \in Z_{u}$. Then, by Theorem 1 , there exists $P_{u} \in \mathcal{L}\left(Z_{u}\right)$ such that $P_{u}=P_{u}^{*} \geq 0$ and

$$
P_{u}\left(\pi_{u} A\right)+\left(\pi_{u}\right)^{*} P_{u}-P_{u}\left(\pi_{u} B\right)\left(\pi_{u} B\right)^{*} P_{u}=0
$$

Further, $\pi_{u} A-\left(\pi_{u} B\right)\left(\pi_{u} B\right)^{*} P_{u}$ is exponentially stable.

Theorem

Assume that the hypothesis (H) holds and that (4) is true. Let $P_{u} \in \mathcal{L}\left(Z_{u}\right)$ be as detailed earlier. Define

$$
P=\pi_{u}^{*} P_{u} \pi_{u}
$$

Then $P=P^{*} \geq 0 ; P$ satisfies the degenerate algebraic Riccati equation and $A-B B^{*} P$ is exponentially stable.

Theorem

Assume that the hypothesis (H) holds and that (4) is true. Let $P_{u} \in \mathcal{L}\left(Z_{u}\right)$ be as detailed earlier. Define

$$
P=\pi_{u}^{*} P_{u} \pi_{u}
$$

Then $P=P^{*} \geq 0 ; P$ satisfies the degenerate algebraic Riccati equation and $A-B B^{*} P$ is exponentially stable.

Proof: Clearly P is self-adjoint and non-negative. That it satisfies the degenerate algebraic Riccati equation follows by multiplying the equation for P_{u} on the left by π_{u}^{*} and on the right by π_{u} and using the fact that π_{u} commutes with A (and so its adjoint commutes with A^{*}) and that π_{u} is a projection.

Finally we see that (with respect to the decomposition $Z=Z_{s} \oplus Z_{u}$),

$$
\begin{gathered}
{\left[\begin{array}{l}
\pi_{s}\left(A-B B^{*} P\right) z \\
\pi_{u}\left(A-B B^{*} P\right) z
\end{array}\right]=} \\
=\left[\begin{array}{rl}
\pi_{s} A & -\pi_{s} B B^{*} \pi_{u}^{*} P_{u} \\
0 & \pi_{u} A-\pi_{u} B B^{*} \pi_{u}^{*} P_{u}
\end{array}\right]\left[\begin{array}{l}
\pi_{s} z \\
\pi_{u} z
\end{array}\right] .
\end{gathered}
$$

Finally we see that (with respect to the decomposition $Z=Z_{s} \oplus Z_{u}$),

$$
\begin{gathered}
{\left[\begin{array}{l}
\pi_{s}\left(A-B B^{*} P\right) z \\
\pi_{u}\left(A-B B^{*} P\right) z
\end{array}\right]=} \\
=\left[\begin{array}{ll}
\pi_{s} A & -\pi_{s} B B^{*} \pi_{u}^{*} P_{u} \\
0 & \pi_{u} A-\pi_{u} B B^{*} \pi_{u}^{*} P_{u}
\end{array}\right]\left[\begin{array}{l}
\pi_{s} z \\
\pi_{u} z
\end{array}\right] .
\end{gathered}
$$

Since both diagonal blocks of the upper triangular matrix are exponentially stable, it follows that $A-B B^{*} P$ is also exponentially stable. \square

Assume that A has no eigenvalues on the imaginary axis. If $(-A, B)$ is exactly controllable in time $T>0$, then so is $\left(-\pi_{u} A, \pi_{u} B\right)$. The eigenvalues of $\pi_{s} A$ are precisely those of A with negative real part. Since $\pi_{u} A-\pi_{u} B B^{*} \pi_{u}^{*} P_{u}$ is similar to $-\left(\pi_{u} A\right)^{*}$, the eigenvalues of this matrix are the reflections on the imaginary axis of those of A with positive real part.
Thus, the eigenvalues of $A-B B^{*} P$ are those of A with negative real part and the reflections on the imaginary axis of those eigenvalues of A with positive real part.

A Variational Characterization

Back to the special case:
We will assume that $-A$ is exponentially stable and that (3) holds. Let P be the solution to the degenerate algebraic Riccati equation obtained in the proof of Theorem 1.

A Variational Characterization

Back to the special case:
We will assume that $-A$ is exponentially stable and that (3) holds. Let P be the solution to the degenerate algebraic Riccati equation obtained in the proof of Theorem 1.

Lemma

Let H be a real Hilbert space. Let $\left\{G_{n}\right\}$ be a sequence in $\mathcal{L}(H)$ such that $G_{n}=G_{n}^{*} \geq 0$. Assume, further that, for every $v \in H$, the sequence $\left\{\left(G_{n} v, v\right)_{H}\right\}$ is decreasing. Then, there exists $G \in \mathcal{L}(H)$ such that $G=G^{*} \geq 0$ and, for every $v \in H, G_{n} v \rightarrow G v$ in H. \square

A Variational Characterization

Back to the special case:
We will assume that $-A$ is exponentially stable and that (3) holds. Let P be the solution to the degenerate algebraic Riccati equation obtained in the proof of Theorem 1.

Lemma

Let H be a real Hilbert space. Let $\left\{G_{n}\right\}$ be a sequence in $\mathcal{L}(H)$ such that $G_{n}=G_{n}^{*} \geq 0$. Assume, further that, for every $v \in H$, the sequence $\left\{\left(G_{n} v, v\right)_{H}\right\}$ is decreasing. Then, there exists $G \in \mathcal{L}(H)$ such that $G=G^{*} \geq 0$ and, for every $v \in H, G_{n} v \rightarrow G v$ in H. \square

Since $A-B B^{*} P$ is exponentially stable, (A, I) is exponentially detectable. So is the pair $(A, k I)$ for any $k \in \mathbb{R}$. In particular, for every $\varepsilon>0$, there exists a unique $P_{\varepsilon}=P_{\varepsilon}^{*} \geq 0$ such that

$$
P_{\varepsilon} A+A^{*} P_{\varepsilon}-P_{\varepsilon} B B^{*} P_{\varepsilon}+\varepsilon^{2} I=0
$$

Further, $A-B B^{*} P_{\varepsilon}$ is exponentially stable.
Then, by lemma, there exists $P_{0}=P_{0}^{*} \geq 0$ solution of the degenerate algebraic Riccati equation.

Further, $A-B B^{*} P_{\varepsilon}$ is exponentially stable.
Then, by lemma, there exists $P_{0}=P_{0}^{*} \geq 0$ solution of the degenerate algebraic Riccati equation.
Since $A-B B^{*} P$ is exponentially stable, we get, by the comparison principle, that $P \geq P_{0}$. Again, by the same principle, we have $P_{\varepsilon} \geq P$ and, passing to the limit, $P_{0} \geq P$. Thus, $P_{0}=P$.

Further, $A-B B^{*} P_{\varepsilon}$ is exponentially stable.
Then, by lemma, there exists $P_{0}=P_{0}^{*} \geq 0$ solution of the degenerate algebraic Riccati equation.
Since $A-B B^{*} P$ is exponentially stable, we get, by the comparison principle, that $P \geq P_{0}$. Again, by the same principle, we have $P_{\varepsilon} \geq P$ and, passing to the limit, $P_{0} \geq P$. Thus, $P_{0}=P$.
Let $\zeta \in Z$ be fixed such that $\zeta \neq 0$.
Now, for $u \in L^{2}(0, \infty ; U)$, set z_{u} to be the solution of (2). Define

$$
E_{\zeta}=\left\{u \in L^{2}(0, \infty ; U) \mid z_{u} \in L^{2}(0, \infty ; Z\}\right.
$$

Consider

$$
\min _{u \in E_{\zeta}} \int_{0}^{\infty}\|u(t)\|_{U}^{2} d t
$$

$\mathrm{FCC} \Rightarrow E_{\zeta} \neq \emptyset$.
E_{ζ} closed?

Proposition

If $-A$ is exponentially stable and (3) holds, then the above minimization problem admits a solution. We have

$$
(P \zeta, \zeta)_{z}=\min _{u \in E_{\zeta}} \int_{0}^{\infty}\|u(t)\|_{U}^{2} d t
$$

and the minimizer is given by

$$
u(t)=-B^{*} e^{-t A^{*}} P \zeta . \square
$$

Proposition

If $-A$ is exponentially stable and (3) holds, then the above minimization problem admits a solution. We have

$$
(P \zeta, \zeta)_{Z}=\min _{u \in E_{\zeta}} \int_{0}^{\infty}\|u(t)\|_{U}^{2} d t
$$

and the minimizer is given by

$$
u(t)=-B^{*} e^{-t A^{*}} P \zeta
$$

Remark 3. Since $-A$ is exponentially stable, A is NOT and so $0 \notin E_{\zeta}$.

One dimensional case

Degenerate Equation:

$$
2 a p-b^{2} p^{2}=0
$$

One dimensional case

Degenerate Equation:

$$
2 a p-b^{2} p^{2}=0
$$

Solutions: $p=0$ and $p=\frac{2 a}{b^{2}}$ (when $b \neq 0$; if $b=0$, then $(-a, b)$ is not exactly controllable).

One dimensional case

Degenerate Equation:

$$
2 a p-b^{2} p^{2}=0
$$

Solutions: $p=0$ and $p=\frac{2 a}{b^{2}}$ (when $b \neq 0$; if $b=0$, then $(-a, b)$ is not exactly controllable).
Perturbed Equation:

$$
2 a p_{\varepsilon}-b^{2} p_{\varepsilon}^{2}+\varepsilon^{2}=0
$$

One dimensional case

Degenerate Equation:

$$
2 a p-b^{2} p^{2}=0
$$

Solutions: $p=0$ and $p=\frac{2 a}{b^{2}}$ (when $b \neq 0$; if $b=0$, then $(-a, b)$ is not exactly controllable).
Perturbed Equation:

$$
2 a p_{\varepsilon}-b^{2} p_{\varepsilon}^{2}+\varepsilon^{2}=0
$$

Positive solution:

$$
p_{\varepsilon}=\frac{a+\sqrt{a^{2}+\varepsilon^{2} b^{2}}}{b^{2}}
$$

One dimensional case

Degenerate Equation:

$$
2 a p-b^{2} p^{2}=0
$$

Solutions: $p=0$ and $p=\frac{2 a}{b^{2}}$ (when $b \neq 0$; if $b=0$, then $(-a, b)$ is not exactly controllable).
Perturbed Equation:

$$
2 a p_{\varepsilon}-b^{2} p_{\varepsilon}^{2}+\varepsilon^{2}=0
$$

Positive solution:

$$
p_{\varepsilon}=\frac{a+\sqrt{a^{2}+\varepsilon^{2} b^{2}}}{b^{2}}
$$

When $a<0, p_{\varepsilon} \rightarrow p=0$.
When $a>0, p_{\varepsilon} \rightarrow p=\frac{2 a}{b^{2}}$.

One dimensional case

Degenerate Equation:

$$
2 a p-b^{2} p^{2}=0
$$

Solutions: $p=0$ and $p=\frac{2 a}{b^{2}}$ (when $b \neq 0$; if $b=0$, then $(-a, b)$ is not exactly controllable).
Perturbed Equation:

$$
2 a p_{\varepsilon}-b^{2} p_{\varepsilon}^{2}+\varepsilon^{2}=0
$$

Positive solution:

$$
p_{\varepsilon}=\frac{a+\sqrt{a^{2}+\varepsilon^{2} b^{2}}}{b^{2}}
$$

When $a<0, p_{\varepsilon} \rightarrow p=0$.
When $a>0, p_{\varepsilon} \rightarrow p=\frac{2 a}{b^{2}}$.
Thus,

$$
a-b^{2} p=\left\{\begin{array}{r}
a \quad \text { when } a<0 \\
-a
\end{array} \text { when } a>0 .\right.
$$

Thank You!

