

Introduction to MATLAB

Anil Kumar

A-408

Department of Mathematics anilpundir@goa.bits-Pilani.ac.in

What is MATLAB?

- A high-performance language for technical computing (Mathworks, 1984).
- A program for doing numerical computation. It was initially designed for solving linear algebra-type problems using matrices. The name is derived from MATrix Laboratory.
- MATLAB has since been expanded and now has built-in functions for solving problems requiring data analysis, signal processing, optimization, and other scientific computations. It also contains functions for 2-D and 3-D graphics and animation.
- Not a computer language, though it does most of the work of a computer language.

Why MATLAB?

- Easy to learn.
- Does not require in-depth knowledge of computer programming, such as compiling and linking.
- Interactive software, used in various areas of engineering and scientific applications.
- a high-level language that has many specialized toolboxes for making things easier for us.
- Provides an extensible programming/visualization environment.
- Provides professional-looking graphs.

Anil Kumar, Mathematics, BITS Goa

1

Starting and Quitting MATLAB

Starting MATLAB

On **Windows** platforms, start MATLAB by double-clicking the MATLAB shortcut icon \checkmark on your Windows desktop.

On UNIX platforms, start MATLAB by typing MATLAB at the operating system prompt.

Quitting MATLAB

Select File \rightarrow Exit MATLAB in the desktop, or type quit in the Command Window.

Anil Kumar, Mathematics, BITS Goa

- (

MATLAB help

In command window:

>> help function_name

Example:

>>help sqrt

https://in.mathworks.com/h elp/releases/R2025a/index. html

Some useful commands

• what List all the m-files in the current directory

• dir/ls List all files in the current directory

type temp Display temp.m in the command window

• delete temp Delete temp.m

cd/chdir Change directory

pwd Show current directory

• which temp Display the directory path to the 'closest' temp.m

who List the known variables

• whos List known variables plus their size

clear Clear variables from the workspace

• clc Clear the command window

Anil Kumar, Mathematics, BITS Goa

Variables in MATLAB

- Begin with an alphabetic character: a
- Case sensitive: a, A
- Variable names can contain up to 2048 characters (MATLAB 2025).
 Use namelengthmax command to verify it.
- No data typing: a = 10; a = 'OK'; a = 2.5
- Default output variable: ans
- Built-in constants: pi, i, j, inf, eps, realmax, realmin
- Special characters: [], (), {}, :, %, :, =, ., ..., @

Anil Kumar, Mathematics; BITS Goa

1

Symbols...

- >> prompt
- ... continue statement on next line
- , separate statements and data
- % start comment which ends at the end of the line
- ; suppress output or use as a row separator in a matrix
- : specify range

Anil Kumar, Mathematics, BITS Goa

1

Relational Operators

MATLAB supports six relational operators:

Less Than < Less Than or Equal <= Greater Than >= Sreater Than or Equal >=

Equal To == (The = character is for assignment, whereas

the == character is for comparing the elements in

two arrays.)

Not Equal To ~=

Anil Kumar, Mathematics; BITS Goa

12

Math operators

a.^b Power a^b or .^ or Multiplication a*b or .* a.*b or Division a/b a./b or ./ or or .\ b∖a b.\a or or

Addition + a+b
Subtraction - a-b

Assignment = a = b (assign b to a)

Mathematical Functions

- sqrt, sin, cos, sinh, asin, acos, exp, log, etc. (Example: b1.m)
- Can handle Specialized mathematical functions, e.g., Bessel, Legendre, beta function, etc.

NUMBER DISPLAY FORMATS

By default,

- if a result is an integer, it is displayed as an integer.
- if a real number, four digits to the right of the decimal place are displayed.
- Can change this default behavior.

(Example: b2.m)

Anil Kumar, Mathematics; BITS Goa

14

Vectors and Matrices in MATLAB

- MATLAB treats all variables as matrices. For our purposes, a matrix can be thought of as an array; in fact, that is how it is stored.
- Vectors are special forms of matrices and contain only one row OR one column.
- Scalars are matrices with only one row and one column.

Vectors and Matrices in MATLAB

Row vectors:

 Start with a left bracket, enter the desired values separated by spaces (or commas), and then close it using a right bracket.

1. Colon notation

x=first: last

x=first: increment: last

2. linspace command:

- x = linspace(a, b): row vector x of 100 points linearly spaced between and including a and b.
- x = linspace(a, b, n): generates a row vector x of n points linearly spaced between and including a and b.

(Example: <u>b3.m</u>)

16

Anil Kumar, Mathematics, BITS Goa

Vectors and Matrices in MATLAB

Column vectors

Specify it element by element and separate values with semicolons.

Note: Separating elements by spaces or commas specifies elements in different columns, whereas separating elements by semicolons specifies elements in different rows.

Transpose of a vector

b=a' transposes

Vectors and Matrices in MATLAB

Formation of matrices

- ✓ Commas or spaces are used to separate elements in a specific row, and semicolons are used to separate individual rows.
- ✓ *Alternately*, pressing the return or enter key while entering a matrix also tells MATLAB to start a new row.

Matrix Operations:

- Addition, subtraction, multiplication(.*), division by a scalar(./) applied to all elements in the array/ matrix.
- size(A) gives the order of the matrix.
- A' gives the transpose of A.
- A(:, 3) gives the third column of A.
- A(1, :) gives the first row of A.

Anil Kumar, Mathematics; BITS Goa

1.9

Vectors and Matrices in MATLAB

- A(1,:) + A(3,:) adds the first and third rows of A.
- C=A+B, C=A-B, C=A*B
- Inverse of A: inv(A)
- determinant of matrix A: det(A)
- rank of matrix A: rank(A)
- Identity matrix of order n: eye(n)
- trace(A) gives the summation of the diagonal elements of a square matrix A.
- an $n \times m$ zero matrix : zeros(n,m)
- an 'n \times m' matrix having random entries: rand(n,m)

(Example: <u>b3.m</u>)

Exercise:

1. Assume that a, b, c and d are defined as follows.

$$a = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, b = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}, c = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, d = 5.$$

2. What is the result each of the following expressions?

$$a+b$$
, $a.*b$, $a.*d$ and $a*d$.

Anil Kumar, Mathematics; BITS Goa

20

Vectors and Matrices in MATLAB

Solution of linear equations: Ax = y

Assuming the system has a unique solution, we can obtain x as:

- x=inv(A)*y (computes inverse explicitly)
- x=A\y

(Example: <u>b4.m</u>)

Exercise:

11

36

Solve the following linear systems

Anil Kumar, Mathematics; BITS Goa

(Example: b5.m)

Visualization

- Simple plotting: plot(x, y)
- Plotting with titles, labels, and grid lines (Example: b6.m)
- Plotting multiple data (Example: b7.m)
- Line color, Line style, Marker style, and Legends (Example: b8.m)
- Subplot can be used for plotting more than one set of axes in a single figure: subplot(m,n,p) (Example b9.m)

This creates m x n subplots in the current figure, arranged in m rows and n columns, and selects the subplot p Grid position for new axes.

• For 3D plots: plot3 command, mesh(x,y,z), surf(x,y,z) and contour (x,y,z). (Example: b10.m)

Anil Kumar, Mathematics, BITS Goa

Exercise:

- Plot the following data
- 1. $y = e^{-0.2t}(\cos(t) + \sin(t)), t \in [0, 2\pi].$
- **2.** $y = \tan(\sin(x)) \sin(\tan(x)), x \in [-\pi, \pi].$
- **3.** Write a MATLAB statements required to plot $\sin(x)$ versus $\cos(2x)$ from 0 to 2π in steps of $\pi/10$.

Anil Kumar, Mathematics, BITS Goa

24

Loops and Logical statements

• <u>for</u> loop

Multiple <u>for</u> loops are also possible.

```
for i=1:100

for j=1:50

for k=1:50

a(i,j)=b(i,k)*c(k,j)+a(i,j);

end

end

end
```

Anil Kumar, Mathematics, BITS Goa

25

Loops and Logical statements

while condition statements

end

if, elseif, else, end

if condition #1 statement #1 elseif condition #2 statement #2 else statement #3 end. Anil Kumar, Mathematics, BITS Goa

(**Example**: <u>b11.m</u>)

Exercise:

Write a MATLAB program to evaluate a function f(x, y) for any two user specified values x and y. The function f(x,y) is defined as follows.

$$f(x,y) = \begin{cases} x+y, & \text{if } x \ge 0 \text{ and } y \ge 0, \\ x+y^2, & \text{if } x \ge 0 \text{ and } y < 0, \\ x^2+y, & \text{if } x < 0 \text{ and } y \ge 0, \\ x^2+y^2, & \text{if } x < 0 \text{ and } y < 0. \end{cases}$$

- Consider the iterative scheme $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ and write a MATLAB code to find the 2. real root of the following equations correct to four decimal points.
 - (a) $\tan x = 4x$,
- (b) $x^4 + x^2 80 = 0$, (c) $\exp(x) 3x^2 = 0$,
- (d) Cube root of 31.

ODE solver

• Many problems that arise in science and engineering require a knowledge of a function y = y(t) that satisfies the *first-order differential equation*

$$y'=f(t,y)$$

and the initial condition $y(a) = y_0$

where a and y_0 are given real numbers and f is a bivariate function that satisfies certain smoothness conditions.

Anil Kumar, Mathematics, BITS Goa

2.8

ODE solver

- MATLAB has several functions for computing a numerical solution of the initial value problems for the ODEs.
- Some are listed in the following table:

Function	Application	Method used
ode23	Nonstiff ODEs	Explicit Runge-Kutta (2, 3) formula
ode45	Nonstiff ODEs	Explicit Runge-Kutta (4, 5) formula
ode113	Nonstiff ODEs	Adams-Bashforth-Moulton solver
ode15s	Stiff ODEs	Solver based on the numerical differentiation formulas
ode23s	Stiff ODEs	Solver based on a modified Rosenbrock formula of order 2

ODE solver

• A simplest form of the syntax for the MATLAB ODE solvers is

$$[t, y] = solver(fun, tspan, y0)$$

where **fun** is a string containing the name of the ODE m-file that describes the differential equation, **tspan** is the interval of integration, and **y0** is the vector holding the initial value(s).

- If **tspan** has more than two elements, then the solver returns computed values of **y** at these points.
- The output parameters t and y are the vectors holding the points of evaluation and the computed values of y at these points.

(Example: Q1_1.m)

Anil Kumar, Mathematics; BITS Goa

30

Exercise

• Find the numerical solution for the following initial value problems (IVPs)

1.
$$\frac{dy}{dt} = \frac{1}{t+y+1}, \ y(0) = 0, \ 0 \le t \le 1.$$

2.
$$\frac{dy}{dt} = -\left(e^{-10^4t} + 1\right)(y - 1), \ y(0) = 2, \ 0 \le t \le 1.$$

3.
$$\frac{dy}{dt} = -2 y t$$
, $y(0) = 1$, $0 \le t \le 1$.

Polynomials

- If $p(x) = a x^2 + b x + c$, then we use to enter this polynomial into MATLAB: p = [a b c]
- polyval (p, x) evaluates a polynomial of degree n at x.
- roots(p) computes the zeros of p(x).

(Example: b13.m)

Write a MATLAB program to find the roots of a quadratic equation $ax^2 + 2bx + c = 0$, whether they are real or complex roots. Use this program to find out the roots of the following equations.

(a)
$$x^2 + 5x + 6 = 0$$
,

(b)
$$x^2 + 4x + 4 = 0$$
,

(a)
$$x^2 + 5x + 6 = 0$$
, (b) $x^2 + 4x + 4 = 0$, (c) $x^2 + 2x + 5 = 0$,

$$(d) x^2 + x - 30 = 0.$$

Anil Kumar, Mathematics, BITS Goa

Curve fitting into the data

- p = polyfit(x, y, n)• Polynomial Curve Fitting:
 - where x and y are vectors containing the x and y data to fit, and n is the order of the polynomial to return.
- fitobject = fit(x,y,fitType): creates the fit to the data in x and y with the model specified by fitType.
- fitopject = fit([x,y],z, fitType): creates a surface fit to the data in vectors x, y, and z.

(Example: b14.m, b15.m)

How to install MATLAB?

- Go to the Mathworks website.
- Create a login using the BITS email.
- Download and follow the instructions to install MATLAB using the following link: https://in.mathworks.com/downloads/
- In case of any problem/assistance, contact Mr. Pushparaj M Paradkar, Embedded Systems Lab, Department of Electrical & Electronics Engineering:

Email: pushparaj@goa.bits-Pilani.ac.in

Phone: 0832-2580-230

Anil Kumar, Mathematics; BITS Goa

2.4

References

- https://in.mathworks.com/help/releases/R2025a/index.html
- Biran, Adrian & Breiner, Moshe, MATLAB for engineers, Wokingham: Addison-Wesley, 1995.
- Gilat, Amos, MATLAB: an introduction with applications, Singapore: John Wiley, 2004.
- Chen, Ke, Giblin, Peter & Irving, Alan, **Mathematical explorations with MATLAB**, Cambridge: Cambridge University Press, 1999.
- Chapman, Stephen J., MATLAB Programming for Engineers, Thomson Brooks/Cole U.K., 2002

36

Anil Kumar, Mathematics; BITS Goa