

Birla Institute of Technology and Science, Pilani Hyd Campus

CS F211: Data Structures and Algorithms
2nd Semester 2024-25 Lab No: 8

Iterators, Sequences and Tree Traversals

General Instructions

• You should use STL only for the program where it is mentioned explicitly. For other programs you

should solve the given task without using it.

• In addition to the methods already specified in the given code, you may also come up with your

own methods to execute the tasks.

Program 1: (Prog1.cpp attached)

Iterators are very handy tool to iterate over the given container sequence whenever needed. The main advantage

of iterators is “flexibility”. Each time new items are added or removed from the Container; we need not maintain

any special ‘size’ variable to loop over. Iterators help us avoid such overhead with clean and readable code.

Given a list of marks of a student in N subjects. Prog1.cpp given stores these marks in a list. It then uses Iterators

to traverse each element and prints those (3rd line in the below output). Then it traverses the list and checks if each

element is odd/ even and prints those. Finally, updates the input marks by adding each element with the number

10, and prints those out. Write down the missing code in Prog1.cpp and run it to get similar output as shown below:

Output:

Program 2: (Prog2.cpp attached)

In the lecture classes, you were taught about Bubble Sort in Sequences along with its’ time complexity. Each

sequence container will have its own time complexity for sorting. Given a doubly linked list, Prog2.cpp implements

swap() method to swap two adjacent nodes in a doubly linked list. It also contains the bubbleSort() method to

implement bubble sort algorithm over a doubly linked list. This should be done in O(n^2) time as this is a doubly

linked list. Try to use the swap () method wherever needed. Try to follow along the comments for writing the missing

code to get the below output. If you want to write your own logic, you are welcome to do so. The driver code is

already available in the code itself. You should get the output as shown below and also run your code on other test

cases:

(Page 1 of 2)

Output:

Program 3: (Prog3.cpp attached)

This program is about a Non-Linear Data Structure, i.e. Tree. Here is a Binary Tree is given for you. Go through the
attached code and understand how recursive methods are created to do basic operations on binary tree. For Non-
Linear data structures, recursive codes are a lot cleaner and easily understandable. Here are your tasks:

 Task 1: Implement recursive preorder traversal.

 Task 2: Implement recursive postorder traversal.

In-order traversal code is given in the program which will be discussed in the next theory class.The driver code is
already available in the code itself. You should get the output as shown below and run it with different test cases
and draw the trees:

Output:

(Page 2 of 2)
