

Birla Institute of Technology and Science, Pilani Hyd Campus
CS F211: Data Structures and Algorithms

2nd Semester 2024-25 Lab No:6 (Stack ADT)
Program 1: The Balanced Parentheses problem discussed in the class is given partly below. Rest all part is given

in attached Prog1.cpp. Run the code to see the output. Modify the code to handle other types of brackets ({} []).

Program 2: The Stock span usecase discussed in the class is partly given below. Find out the missing code at line

numbers 73, and 79 and run the code to get the output as shown below. Remaining part of the code is given in

attached Prog2.cpp. Run the program with different test cases and verify the results.

Program 3: Consider the problem of a trapped mouse (Fig. a) that tries to find its way (from position m: Fig. b)

to an exit (position e: Fig. b) in a maze as discussed in the class (Fig. c). If it reaches a dead end, it retraces its steps

to the last position and begins at least one more untried path using backtracking. To protect itself from falling, the

mouse also has to constantly check whether it is in such a borderline position. To avoid it, the program automatically

puts a frame of 1s around the maze entered by the user. The program uses two stacks: one to initialize the maze

and another to implement backtracking. The user enters a maze one line at a time. The rows are pushed on the

stack mazeRows in the order they are entered after attaching one 1 at the beginning and one 1 at the end. After all

rows are entered, the size of the array store can be determined, and then the rows from the stack are transferred

to the array. A second stack, mazeStack, is used in the process of escaping the maze. To remember untried paths

for subsequent tries, the positions of the untried neighbours of the current position (if any) are stored on a stack

and always in order, first upper neighbour, then lower, then left, and finally right. To avoid falling into an infinite

loop of trying paths that have already been investigated, each visited position of the maze is marked with a period.

 (c)

You are given with the C++ code (Prog3.cpp) to implement this maze path finding using a stack. Run this program
to get similar output as shown in Fig. c. Also, try with multiple inputs. Your task in this program is to modify the
given code so that it randomly selects unvisited squares/ nodes in place of top, down, left and right square
sequences (being pushed onto the stack). So that, you get different paths for the same input when run multiple
times as shown in below figures (Fig. d) and (Fig. e). You may also choose any other order.

Program 4: Imagine that you are responsible for keeping the score for a new number game invented by

Recreation Activity Forum (RAF) of BITS Hyd campus with strange rules. You have to maintain a record for the game,

and are given a string called operations, where operations[i] is the ith operation you must apply to the record. The

operations can be any of the following:

 An integer x: Record a new score of x.

 '+’: Record a new score that is the sum of the previous two scores.

 'D' : Record a new score that is the double of the previous score.

 'C’: Invalidate the previous score, removing it from the record.

Return the sum of all the scores on the record after applying all the operations.

Below are few examples:

Input: ops = “52CD+”

Output: 30

Explanation:

"5" - Add 5 to the record, record is now [5].

"2" - Add 2 to the record, record is now [5, 2].

"C" - Invalidate and remove the previous score, record is now [5].

"D" - Add 2 * 5 = 10 to the record, record is now [5, 10].

"+" - Add 5 + 10 = 15 to the record, record is now [5, 10, 15].

The total sum is 5 + 10 + 15 = 30.

Input: ops = “524CD9++”

Output: 55

Explanation:

"5" - Add 5 to the record, record is now [5].

"2" - Add 2 to the record, record is now [5, 2].

"4" - Add 4 to the record, record is now [5, 2, 4].

"C" - Invalidate and remove the previous score, record is now [5, 2].

"D" - Add 2 * 2 = 4 to the record, record is now [5, 2, 4].

"9" - Add 9 to the record, record is now [5, 2, 4, 9].

"+" - Add 4 + 9 = 13 to the record, record is now [5, 2, 4, 9, 13].

"+" - Add 9 + 13 = 22 to the record, record is now [5, 2, 4, 9, 13, 22].

The total sum is 5+2+4+9+13+22 = 55.

You are given with C++ code for the above task (Prog4.cpp). Your task is to fill the code missing in the second last
else if part.
