

Birla Institute of Technology and Science, Pilani Hyd Campus
CS F211: Data Structures and Algorithms

2nd Semester 2024-25 Lab No: 11
Hash Maps

Program 1:

Given an unordered_map () class as shown below. The output of the code is also given for a better understanding. C++ uses

hash tables to implement maps. Your task in this code is to complete the two tasks given in the driver code (line no: 21 and

line no: 27) to get the desired output.

Program 2: Caching (filemanager.cpp attached)

The filemanager.cpp program given here allows users to create new files and read existing files. Each file is described by its

name and content (or text). The program uses caching to prevent repetitive file reads. The cache is a fixed-length vector

containing files that have already been read. A hashmap maps file name to the index of the file in the cache vector. When a

requested file is present in the cache, the manager returns the content directly from the cache, but if it is not present, it frees

a space in the cache and reads the requested file into it. The manager uses a least-recently used (LRU) strategy as discussed in

the class for replacement—when in need of space, the LRU file is replaced by the new one. The content of the file is then

output.

Task 1: Complete the get() method of the file manager.

Task 2: The hashmap used by the manager uses separate chaining to resolve the collisions. Modify the class to implement linear

or quadratic probing.

Task 3: The freeSpace() method given in the program runs in O(n), which essentially defeats the purpose of having a hashmap.

Optimise the function by using a priority queue or a heap to retrieve the LRU file in O(logn). You may use STLs to solve these

tasks.

The output should look like:

Program 3: DNS Resolution (resolver.cpp attached)

When you are using the Internet, the domain of the website that you wish to access (like www.google.com) is first converted

into a corresponding IP address (like 8.8.8.8) through a system called DNS (Domain Name System). You might think that DNS

makes use of a single server that contains all domain-IP mappings, but in reality, DNS consists of many servers that operate in

a hierarchical fashion. Let us consider an imaginary world where DNS requests are resolved the following way (this is inspired

by how DNS resolutions work in real life).

1. A request for the IP corresponding to “in.ts.hyderabad.gov” is sent to the root DNS server. This request is forwarded to the

“.in” DNS server.

2. The “.in” DNS server forwards the request to the “.ts” DNS server.

3. The “.ts” DNS server forwards the request to the “.hyderabad” DNS server.

4. The “.hyderabad” DNS server forwards the request to the “.gov” authoritative server.

5. The “.gov” authoritative server contains the requested IP address, and this is returned.

Note that in this case, the DNS server which we refer to as “.hyderabad” is only used in resolving URLs that are prefixed with

“in.ts.hyderabad”. So, a URL prefixed with “bits.hyderabad” would go through a different server. Therefore, the system of DNS

servers should be understood as a tree and not a directed acyclic graph. Each DNS server keeps track of its immediate children

servers using a hashmap. A partial implementation of the code is present in resolver.cpp.

Task 1: Complete the findRecursive() method of the Server class. You can refer to the implementation of the addRecursive()

method for help.

Task 2: In the current implementation, a server can behave as both a DNS server and an authoritative server. Modify the code

to prevent this behaviour.

Outputs are as shown below:
