

Birla Institute of Technology and Science, Pilani Hyd Campus

CF F211: Data Structures and Algorithms

2nd Semester 2024-25 Lab No: 10

Priority Queue, Binary Heap, Job Scheduling
 General Instructions

• You should use STL only for the program where it is mentioned explicitly. For other programs you

should solve the given task without using it.

• In addition to the methods already specified in the given code, you may also come up with your

own methods to execute the tasks.

Program 1: (Prog1.cpp attached)
In the lecture class, you were taught how we can Sort a List or Sequence using a Priority Queue (PQ-Sort). Depending

on whether we take a Min-Priority Queue or a Max-Priority Queue, the sorted list order will vary.

Given that P is the priority queue and S is the input list, below is the C++ code to sort S using P:

/* Ref Lect number 24 */

while (!S.empty()){

 int e = S.front();

 S.pop_front();

 P.push(e);

}

while (!P.empty()){

 int e = P.top();

 S.push_back(e);

 P.pop();

}

Sometimes, it is important to implement a custom Comparator method to help the compiler in deciding how to

compare (sort) two given types or more importantly user defined classes. If we choose to design P as a Min-Priority

Queue, then the above Comparator (class C) must be passed to the declaration of P. So, if we want to sort the list

in ascending order, we should initialize P as follows:
 priority_queue<int, vector<int>, C> P;

The output of the Prog3.cpp is as shown below:

Task: Implement the missing code: class D to write a custom comparator class to create a Max-Priority Queue,

Implement the sortDescending() method to sort the list using Max-Priority Queue and also, implement the

sortByYCoordinate() method to sort this list of points in increasing order of their Y-coordinates.

class C

{

 public:

// Overriding the comparison operator

// Telling the Compiler how to compare any two items.

 int operator()(const int a, const int b){

 return a > b; // for a min-priority queue

}

};

Program 2: (Prog2.cpp attached)

The attached code already has sort() method that implements Heap Sort for a Min-Heap but specific functions to

support the sorting procedure are not implemented. Given a partially complete Binary Min Heap (Prog1.cpp), here

are your tasks:

 Task 1: Complete extractMin() method to remove and return the minimum item in the Heap.

 Task 2: Implement bubbleDown() method to perform bubbling-down (heapify) operation for the element

at the given index. Refer to Lecture slides if needed.

The driver code is already available. You should get the output as shown below:

Output:

Do we need to write a custom implementation of MAX_HEAP as well?

NO, given a MIN_HEAP, we can also simulate it to work as a MAX_HEAP. Here’s how we can do it:

Given input List = [7, 4, -2, 15, 9, 11]

Convert all items to their negatives: [-7, -4, 2, -15, -9, -11] and initialize the Min Heap with this input.

Now, extractMin() will return -15, we invert the sign again (change back to original) = 15.

This way our Min Heap will behave as a Max Heap.

Now that you solved both the tasks in Program 2, use your Min-Heap class implementation to execute the task

given in Program 3.

Program 3: (Prog3.cpp attached)

In the lecture slides you were taught about the application of Heaps to solve the problem of Job scheduling in

Operating Systems.

Problem: There are M CPUs and N jobs. As soon as an i'th CPU (0 <= i < M) becomes idle, a job will be allocated.

You are given that each j'th job (0 <= j < N) has its own CPU time required to finish execution. Here is your task:

 Task 3: Implement longestJobFirst() method to implement the Longest Job First Scheduling Algorithm.

Take reference from shortestJobFirst() method to execute this task.

The driver code is already available. You should get the output as shown below:

Output:
