

13.02.2024

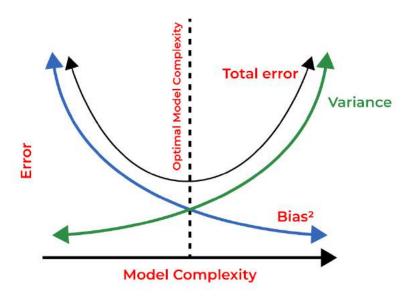
BITS F464: Machine Learning

REGRESSION MODELS

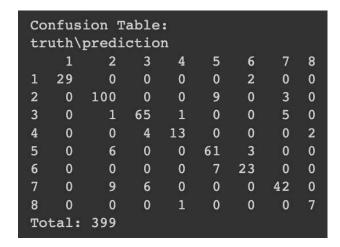
Chittaranjan Hota, Sr. Professor

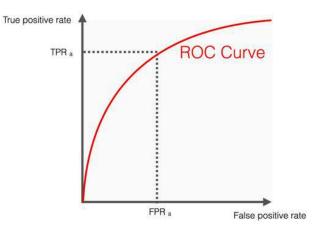
Dept. of Computer Sc. and Information Systems
hota@hyderabad.bits-pilani.ac.in

Recap:

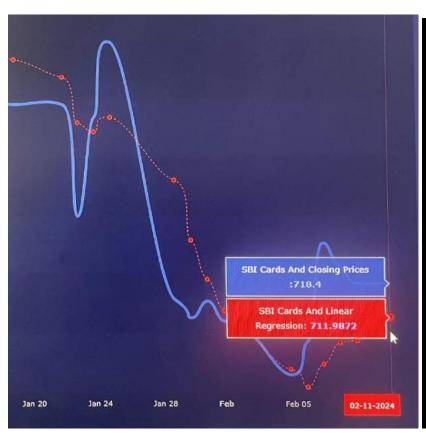


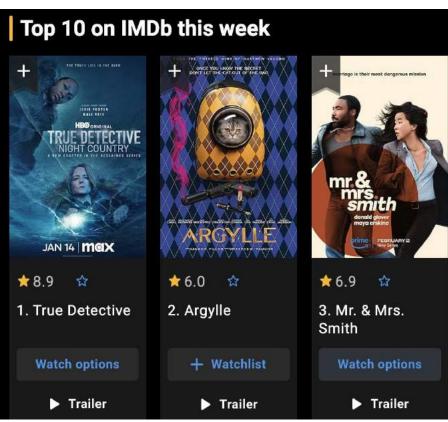
$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$





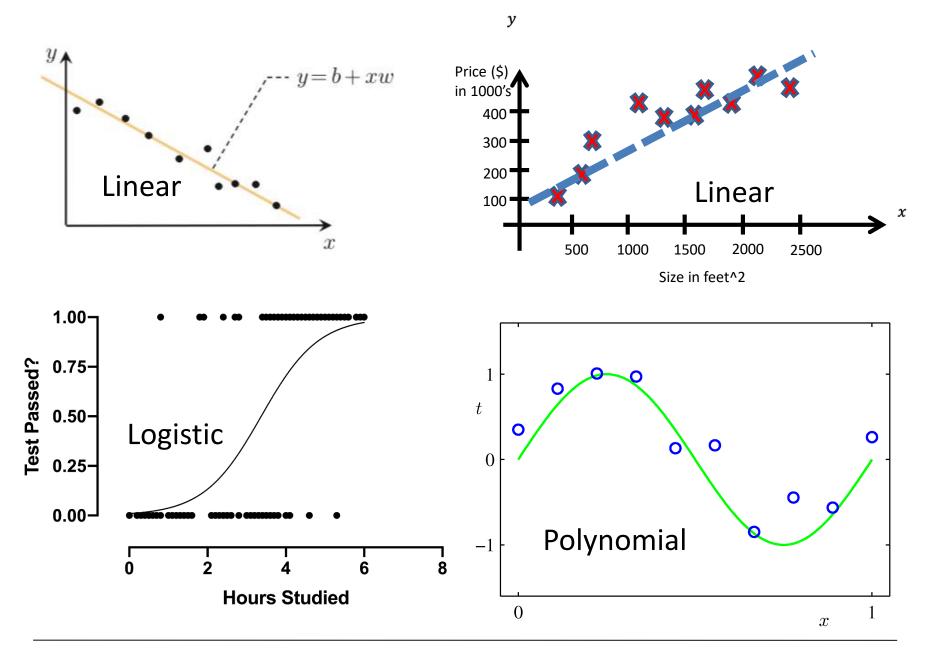
What Type of Problems can you solve?





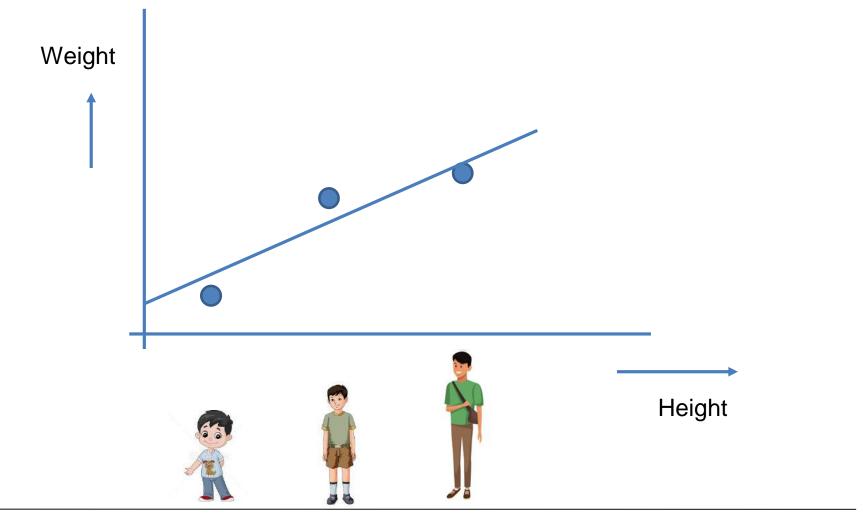
Source: www.macroaxis.com/stocks/

https://www.imdb.com/



Different types of Regression for different purposes. Ridge, Lasso, Bayesian, ...

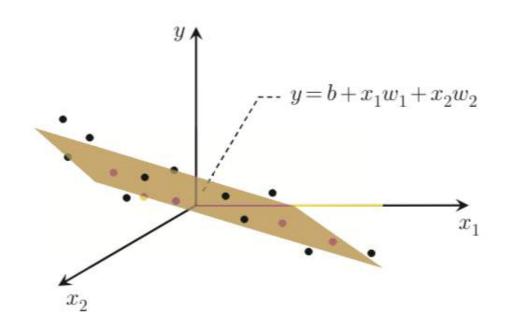
Regression with Scalar Input(Univariate)



Simple Linear Regression

With Vector inputs (more covariates)

Rank	Country	GDP (in USD Bil	
1.	United States of America	26,954	
2.	China	17,786	
3.	Germany	4,430	
4.	Japan	4,231	
5.	India	3,730	
6.	United Kingdom (UK)	3,332	
7.	France	3,052	
8.	Italy	2,190	
9.	Brazil	2,132	
10.	Canada	2,122	



https://currentaffairs.adda247.com/

Unemployment rate, education level, population count, land area, income level, investment rate, life expectancy, ... (Multiple Linear Regression: Multi-variate)

Another Example of Multi-variate Regression

Sales = $b + w_1$ weather $+ w_2$ money $+ w_3$ day

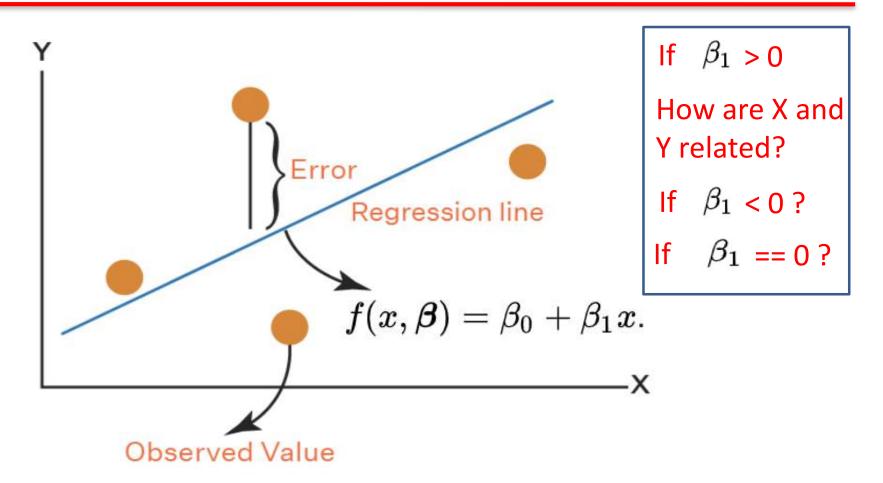
Regression:

Process of finding out relationship between a dependent variable (outcome/ response/label) and one or more independent variables (predictors/ covariates/ explanatory variables/ features)

Independent variables (X): weather (rainy, sunny, cloudy), amount in hand, day type (working, holiday), Dependent variable: Y (Sales)

How the dependent variable (Y) will react to each variable X taken independently?

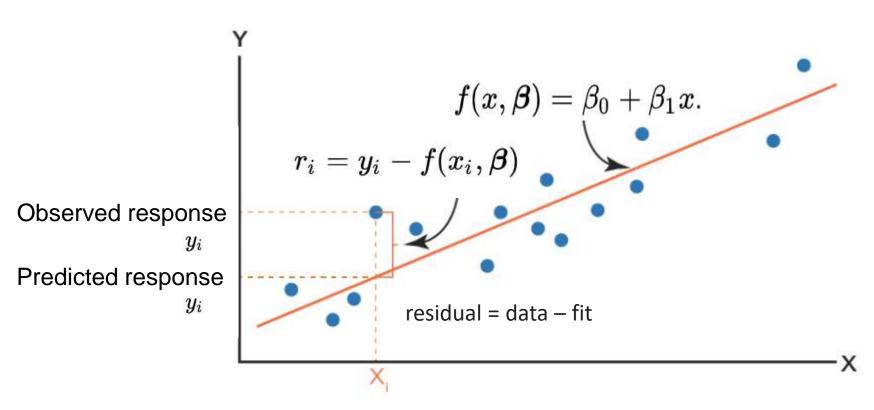
Best Fitting a Line: Least Squares Method



The target function: $f(x,oldsymbol{eta})$, where m adjustable parameters are held in vector $oldsymbol{eta}$.

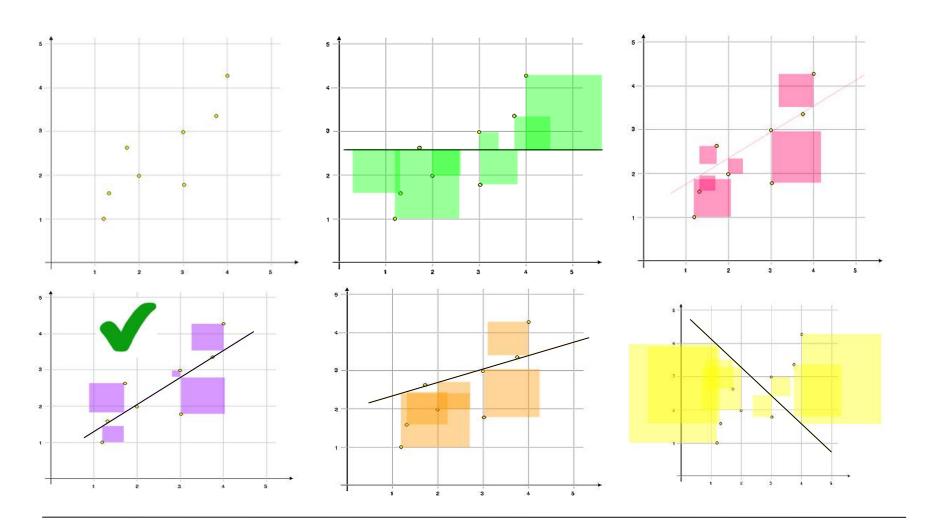
Simple Linear Regression

Best Fitting a Line: Least Squares Method



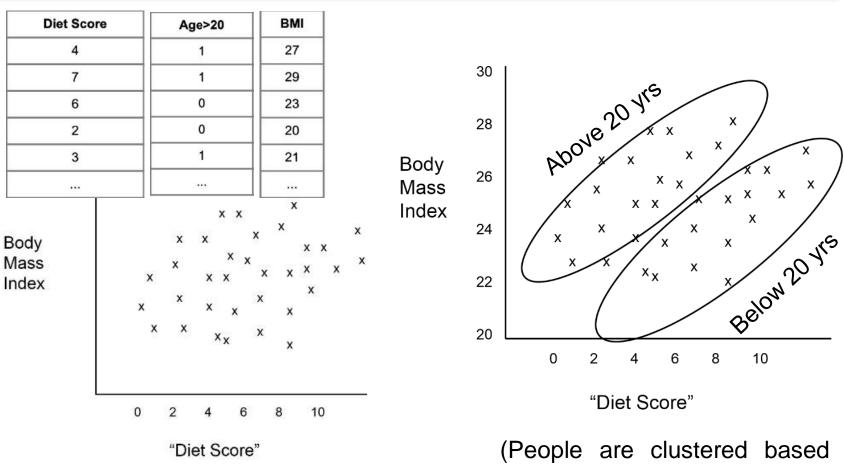
Find out the optimal parameter values by minimizing the <u>sum of squared</u> residuals $S = \sum_{i=1}^{n} r_i^2$

Can you choose the best-fit line?



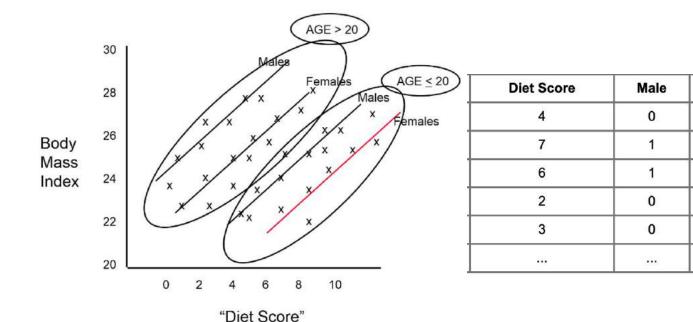
Hypothetically: Say, weight = 2 + 1.5 height

Multiple Linear Regression Analysis



(hardly any association between the two)

(People are clustered based on age)



Age>20

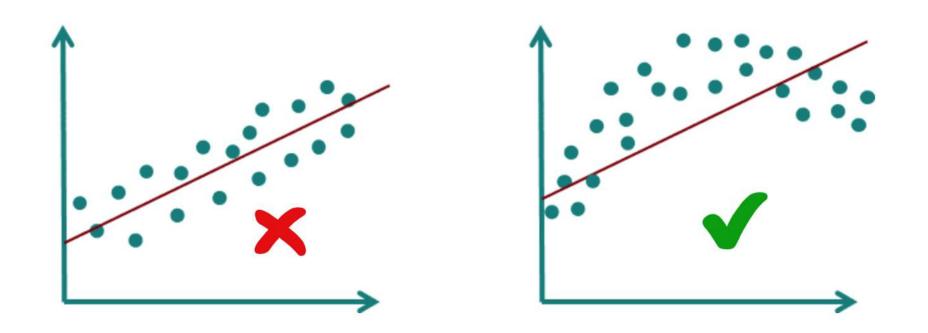
BMI

$$BMI = 18 + 1.5 (diet score) + 1.6 (male) + 4.2 (age > 20)$$

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

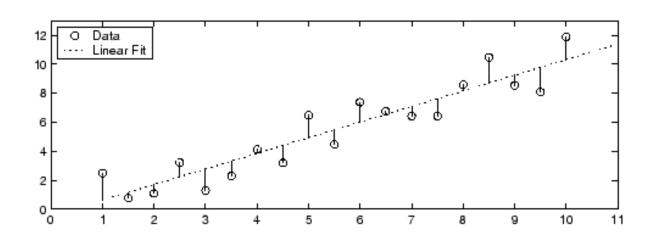
Img. Source: https://sphweb.bumc.bu.edu/

Non-linear relationships

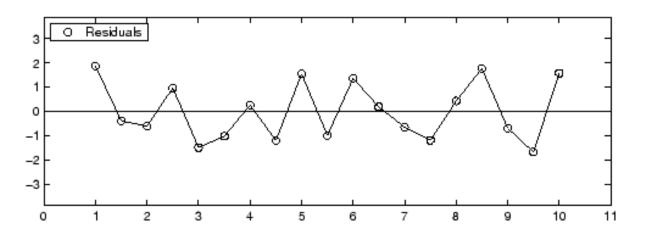


<u>Examples:</u> House price based on Floor area, Electricity consumption based on no. of household members and appliances being used.

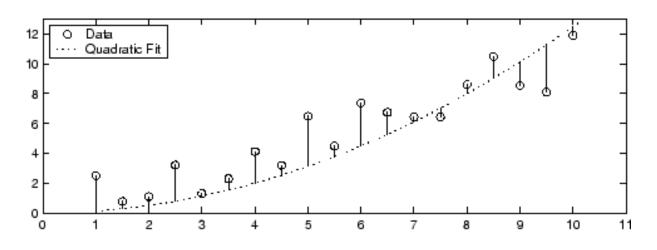
Analyzing Residuals



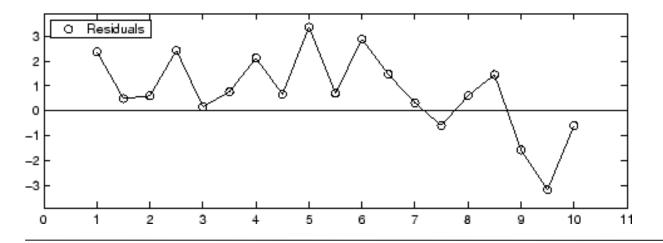
Model describes data well or poor?



Randomly scattered around zero



Model includes a Seconddegree polynomial (quadratic term)



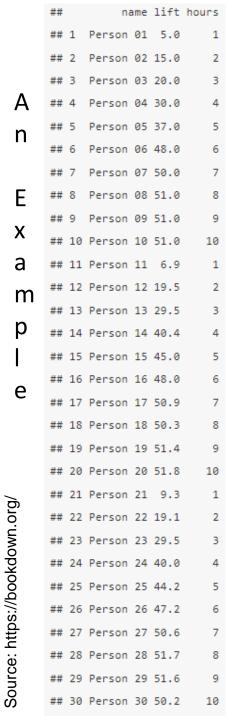
Systematically positive for much of the data.

Good or bad fit?

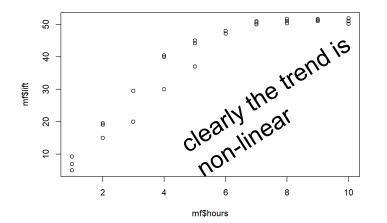
Non-linear relations using Linear models?

- Feature Engineering: Engineer new features by transforming the existing ones to capture non-linear relationships, e.g, you can include polynomial features (e.g., quadratic, cubic).
- Using Basis Functions: Instead of using the original features, you can use basis functions, which are transformations of the original features, e.g polynomial basis functions, Gaussian radial basis functions, or sigmoidal basis functions.
- Regularization: Ridge regression (L2 regularization) or Lasso regression (L1 regularization) to penalize large coefficients.
- Non-linear Regression Models: If the relationship is highly non-linear, use decision trees, random forests, support vector machines, or neural networks.

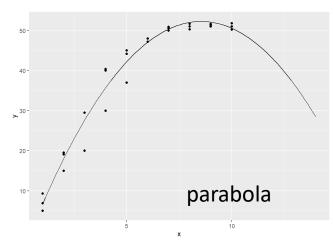
We will see some of these...



 lift is the dependent variable, and the independent variable is the 'hours', i.e the time spent in weight lifting.



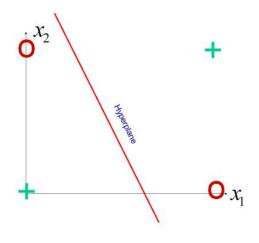
We add a quadratic term as an independent variable in the model. y = x²



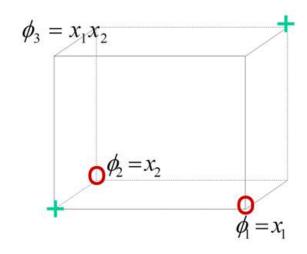
$$\hat{lift} = -6.13 + 13.67 * hours - 0.8 * hours^2$$

##		na	ame	lift	hours	hoursSq
##	1	Person	01	5.0	1	1
##	2	Person	02	15.0	2	4
##	3	Person	03	20.0	3	9
##	4	Person	04	30.0	4	16
##	5	Person	05	37.0	5	25
##	6	Person	06	48.0	6	36
##	7	Person	07	50.0	7	49
##	8	Person	08	51.0	8	64
##	9	Person	09	51.0	9	81
##	10	Person	10	51.0	10	100
##	11	Person	11	6.9	1	1
##	12	Person	12	19.5	2	4
##	13	Person	13	29.5	3	9
##	14	Person	14	40.4	4	16
##	15	Person	15	45.0	5	25
##	16	Person	16	48.0	6	36
##	17	Person	17	50.9	7	49
##	18	Person	18	50.3	8	64
##	19	Person	19	51.4	9	81
##	20	Person	20	51.8	10	100
##	21	Person	21	9.3	1	1
##	22	Person	22	19.1	2	4
##	23	Person	23	29.5	3	9
##	24	Person	24	40.0	4	16
##	25	Person	25	44.2	5	25
##	26	Person	26	47.2	6	36
##	27	Person	27	50.6	7	49
##	28	Person	28	51.7	8	64
##	29	Person	29	51.6	9	81
##	30	Person	30	50.2	10	100

Basis Functions: Why are they needed?



Linear or non-linear?



Let us add a basis function x_1x_2 into the input (this term couples two terms non-linearly)

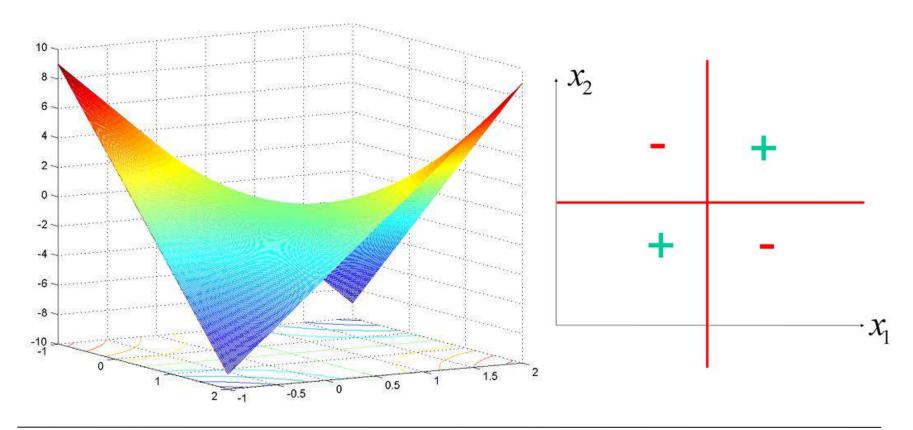
With the third input $z = x_1x_2$ the XOR becomes linearly separable.

$$f(\mathbf{x}) = 1 - 2x_1 - 2x_2 + 4x_1x_2 = \phi_1(x) - 2\phi_2(x) - 2\phi_3(x) + 4\phi_4(x)$$

with
$$\phi_1(x) = 1$$
, $\phi_2(x) = x_1$, $\phi_3(x) = x_2$, $\phi_4(x) = x_1x_2$

Acknowledgement: Volker Tresp's presentation

$$f(\mathbf{x}) = 1 - 2x_1 - 2x_2 + 4x_1x_2$$



Acknowledgement: Volker Tresp's presentation

What are Basis Functions?

Simplest model of Linear Regression: $y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D$

Key Property: Linear function of parameters. Also, it is a linear function of its input variables → Imposes serious limitations on the model.

Basis functions come to rescue (called derived features in machine learning) are building blocks for creating more complex functions

For example, individual powers of x: the basis functions 1, x, x^2 , x^3 ... can be combined together to form a polynomial function.

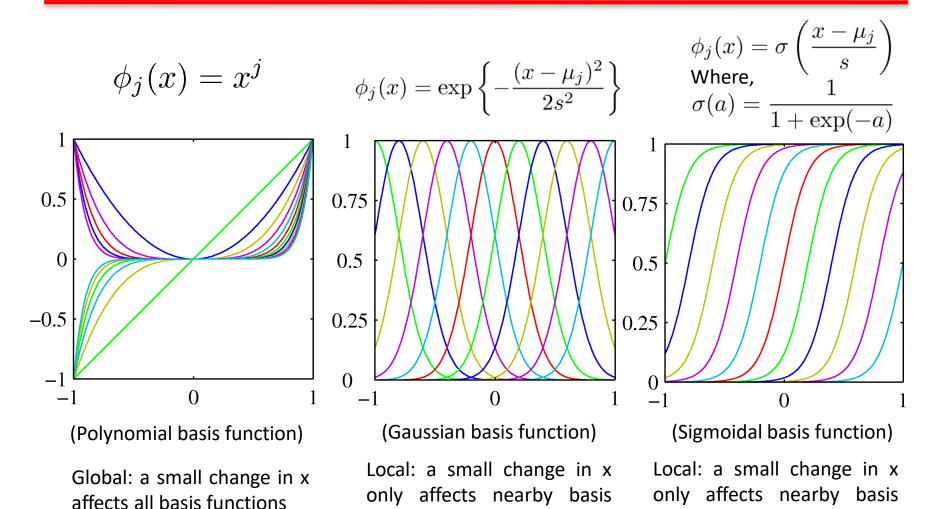
Basis functions $\phi(x)$ extend this class of models by considering linear combinations of handpicked fixed nonlinear functions of the input variables.

Non linearity in the data while keeping linearity in parameters.

Non linearity in (vector form)
$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$$
 or $y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{n} w_j \phi_j(\mathbf{x})$

Where,
$$\phi(\mathbf{x}) = [\phi_0(x_1), \phi_1(x_2), \dots, \phi_{M-1}(x_n)]^T$$
 and $\mathbf{w} = (w_0, \dots, w_{M-1})^T$

Basis functions for Non-linearity



functions.

functions.

The Learning Algorithm

Repeat **Initial Random Weights** until the error is minimized Compute least square error ----Compute the gradient to change the weight

Loss is stable, output

the model

Error is too high. Are the weights correct? 25 20 15 Reduced rapidly. Weights tend 10 to become stable. 5 20 No more change of the loss/ cost function. Model found best weights.

An Example of house price prediction

Size in sq. feet (x)	Price in 1000's (y)		
2104	460		
1416	232		
1534	315		
852	178		
	•••		

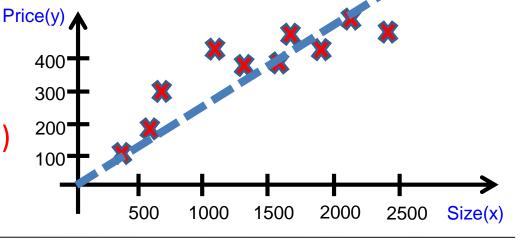
Training Set

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

What is the value of θ_0 ?

Minimize Cost/Loss: (MSE)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

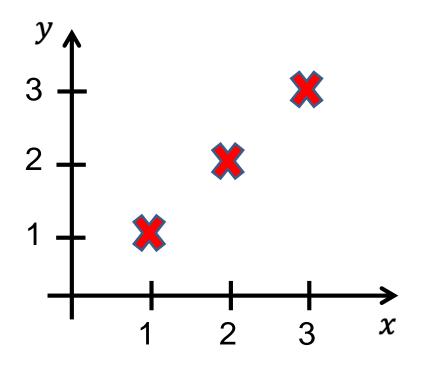


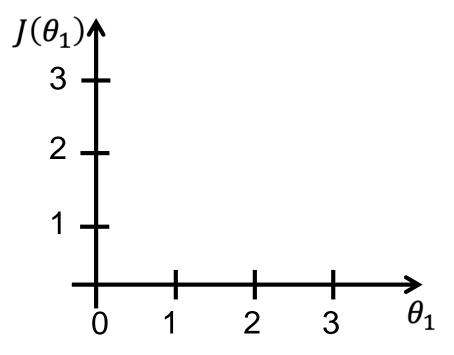
The division by 2 is for convenience and doesn't fundamentally change the result; it simplifies the derivative computation when optimizing models.

Minimizing the Cost Function

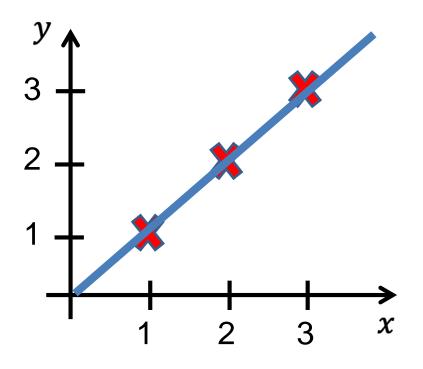
 $h_{\theta}(x)$, function of x

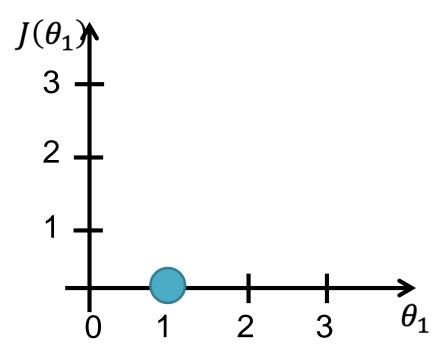
 $J(\theta_1)$, function of θ_1



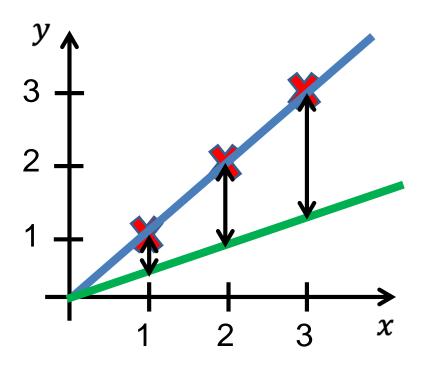


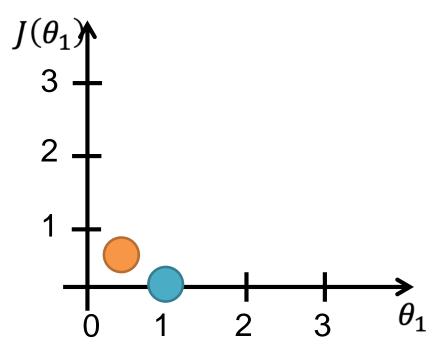
$$J(\theta_1)$$
, function of θ_1

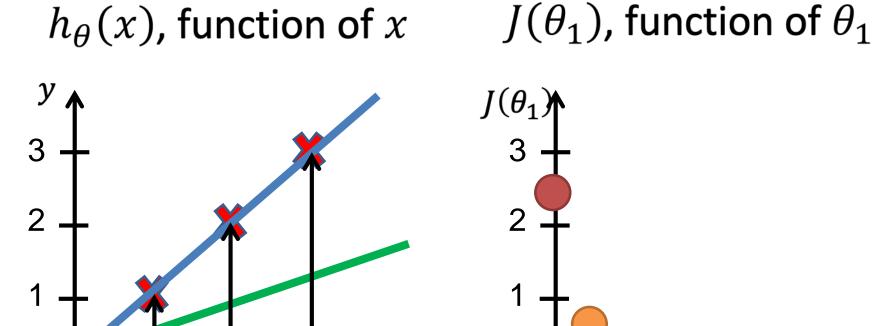




$$J(\theta_1)$$
, function of θ_1

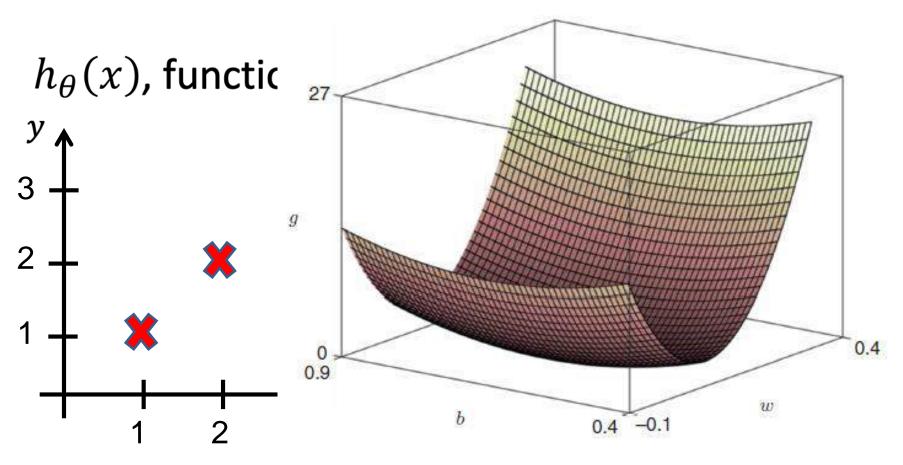






X

Acknowledgement: Andrew Ng, Stanford



MSE cost function for linear regression is always Convex.

Gradient Descent: Minimizing the MSE

• Optimization algorithm used to minimize the MSE function by iteratively adjusting parameters in the direction of the negative gradient, aiming to find the optimal set of parameters.

Img. Source: https://www.analyticsvidhya.com/

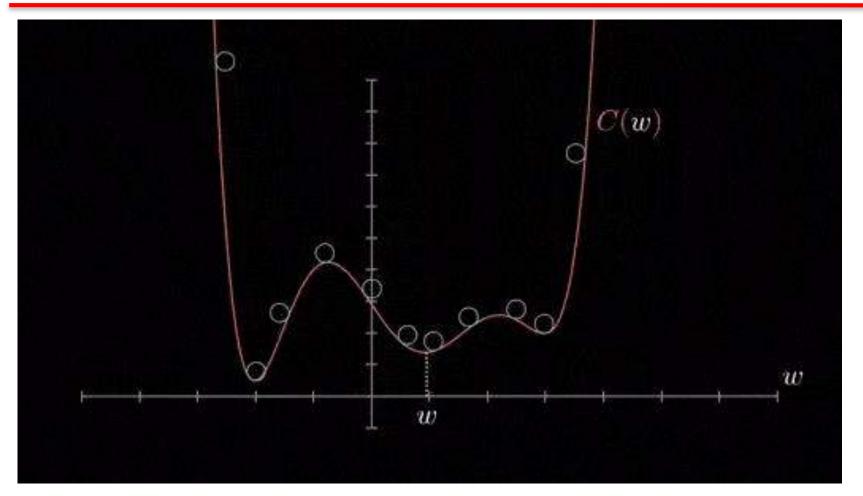
If we represent the gradient of the loss function as ∇L , and the parameters we are optimizing as θ :

Then the update rule for gradient descent is:

$$\theta$$
_new = θ _old $-\alpha * \nabla L$

Move in the opposite direction of the gradient.

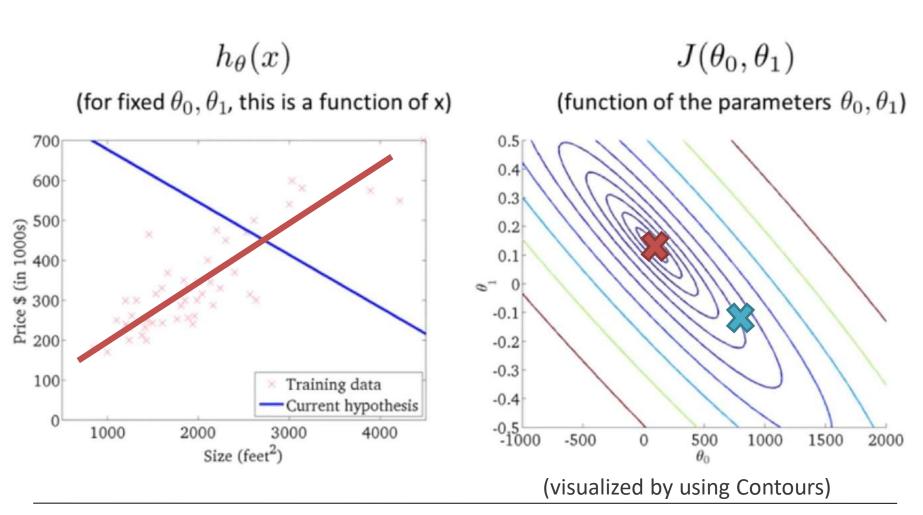
Many local minima in gradient descent



MSE cost function is Convex. Will you get many local minima? No, only one global minima.

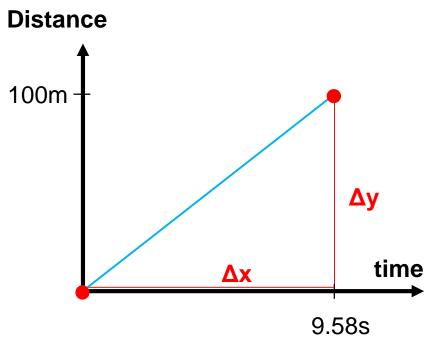
Reason: If you pick any two points on the curve, the line joining them will never cross the curve.

Visualizing Gradient Descent



Acknowledgement: Andrew Ng, Stanford

A bit of Math: Derivative of a Function?

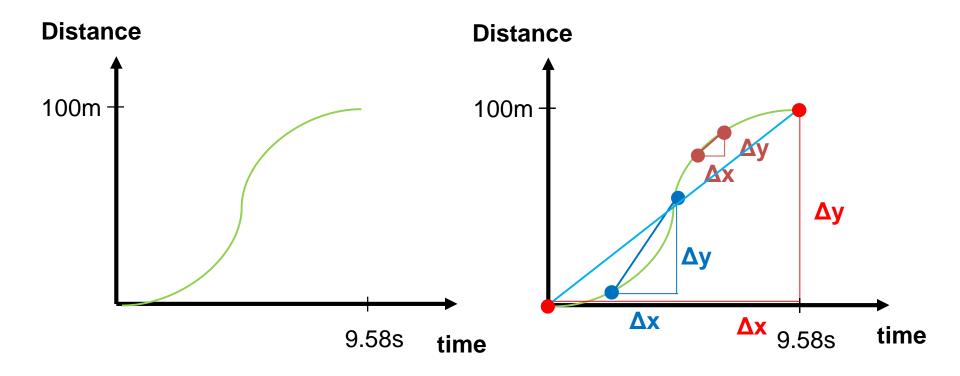


What is his Average Speed?

World's fastest man on the earth?

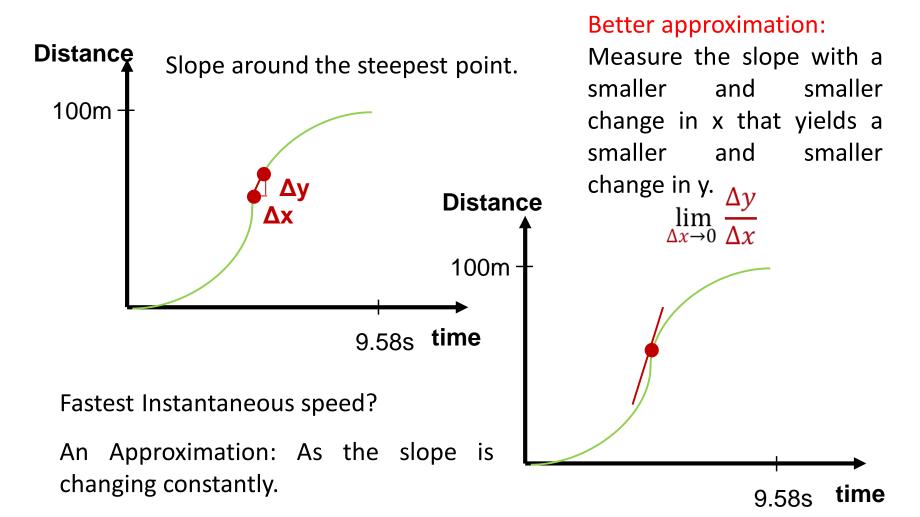
- = Change in Distance/Change in Time
- $= \Delta y/\Delta x$
- = 100/9.58
- = 10.43 m/s

Instantaneous Speed Vs Average Speed



Will the $\Delta y/\Delta x$ or $\Delta y/\Delta x$ be different than the average slope, i.e., $\Delta y/\Delta x$?

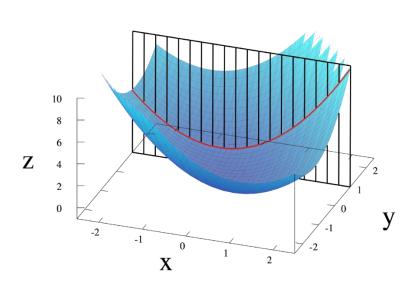
What would be really the Instantaneous speed?

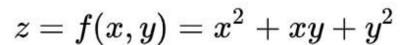


Instantaneous Slope is called Derivative: $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$

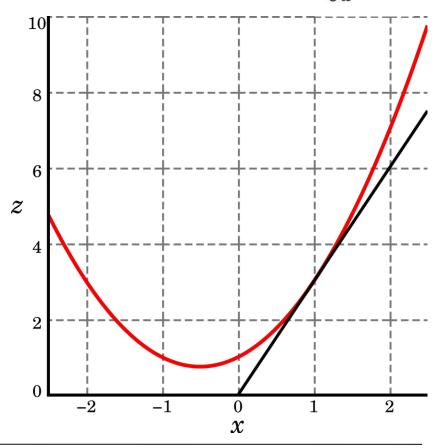
What is Partial Derivative?

What is the partial derivative of this function at P(1,1)?

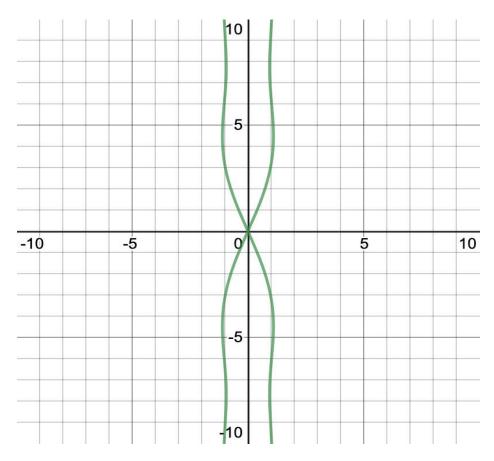




That is the slope of f at the point (x, y)



Gradient: All partial derivatives together



$$\frac{\partial f}{\partial x} = 2xy$$

$$\frac{\partial f}{\partial y} = x^2 + \cos(y)$$

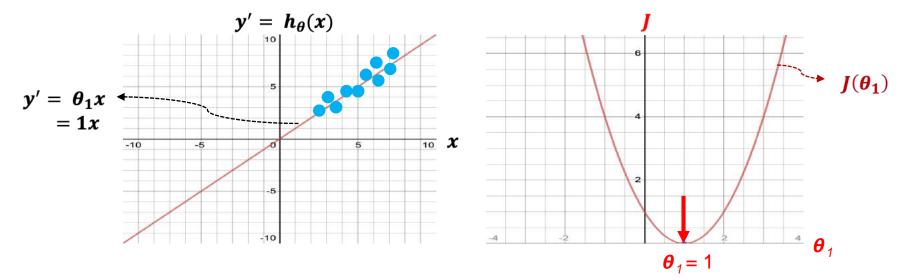
Gradient

$$\widehat{\nabla}f(x,y) = \nabla x^2 y + \sin(y)
= \begin{bmatrix} 2xy \\ x^2 + \cos(y) \end{bmatrix}$$

Multivariate Function: $f(x, y) = x^2y + \sin(y)$

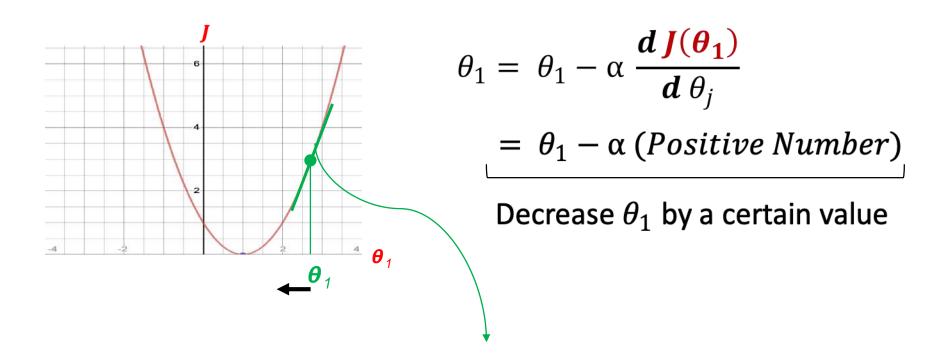
The Impact of Partial Derviative

• For simplicity, let us assume our optimization objective is to minimize $J(\theta_1)$, thus, $\theta_0 = 0$



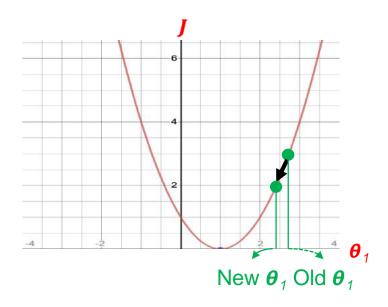
 $h_{\theta}(x)$ is the **Hypothesis Function**

 $J(\theta_1)$ is the **Cost Function**



Positive Derivative

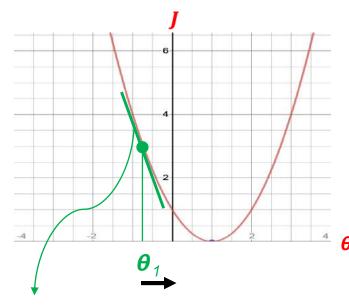
Acknowledgement: Mohammad Hammoud, CMU (Qatar)



$$\theta_{1} = \theta_{1} - \alpha \frac{d J(\theta_{1})}{d \theta_{j}}$$

$$= \theta_{1} - \alpha \text{ (Positive Number)}$$

Decrease θ_1 by a certain value

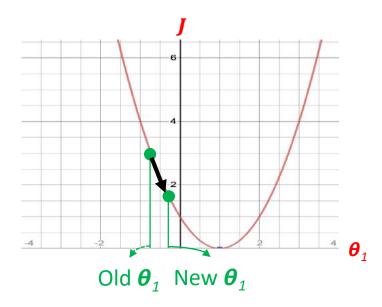


$$\theta_{1} = \theta_{1} - \alpha \frac{d J(\theta_{1})}{d \theta_{j}}$$

$$= \theta_{1} - \alpha (Negative Number)$$

Increase $heta_1$ by a certain value

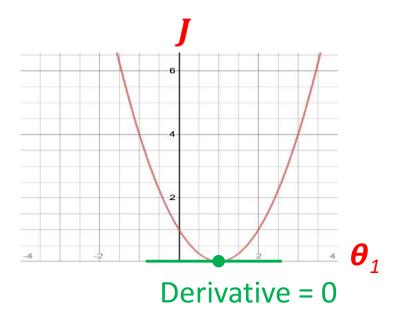
Negative Derivative



$$\theta_{1} = \theta_{1} - \alpha \frac{d J(\theta_{1})}{d \theta_{j}}$$

$$= \theta_{1} - \alpha (Negative Number)$$

Increase θ_1 by a certain value

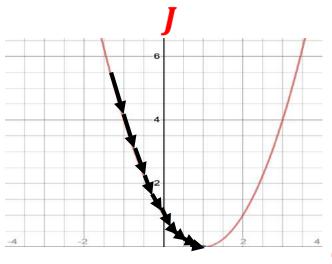


$$\theta_1 = \theta_1 - \alpha \frac{\mathbf{d} J(\theta_1)}{\mathbf{d} \theta_j}$$

$$= \theta_1 - \alpha \text{ (Zero)}$$

 θ_1 remains the same, and hence, gradient descent has converged.

The Impact of Learning Rate



 $oldsymbol{ heta}_1$

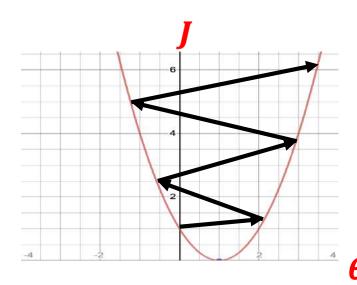
Too Small

Learing Rate

$$\theta_{1} = \theta_{1} - \alpha \frac{d J(\theta_{1})}{d \theta_{j}}$$

$$= \theta_{1} - (Too Small Number) \frac{d J(\theta_{1})}{d \theta_{j}}$$

 θ_1 changes only a tiny bit on each step, hence, gradient descent will render slow (will take more time to converge)



$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - (Too\ Large\ Number) \frac{dJ(\theta_{1})}{d\theta_{j}}$$

 θ_1 changes a lot (and probably faster) on each step, hence, gradient descent will potentially overshoot the minimum and, accordingly, fail to converge (or even diverge)

Too Large

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, ..., 0.9, 1

Gradient Descent for Linear Regression

Linear regression model:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

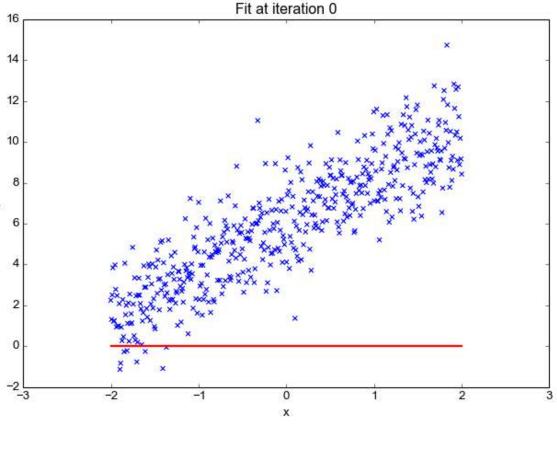
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x))^{i}$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \sum_{k=1}^{m} \sum_{k=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{k=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{$$

Repeat until convergence

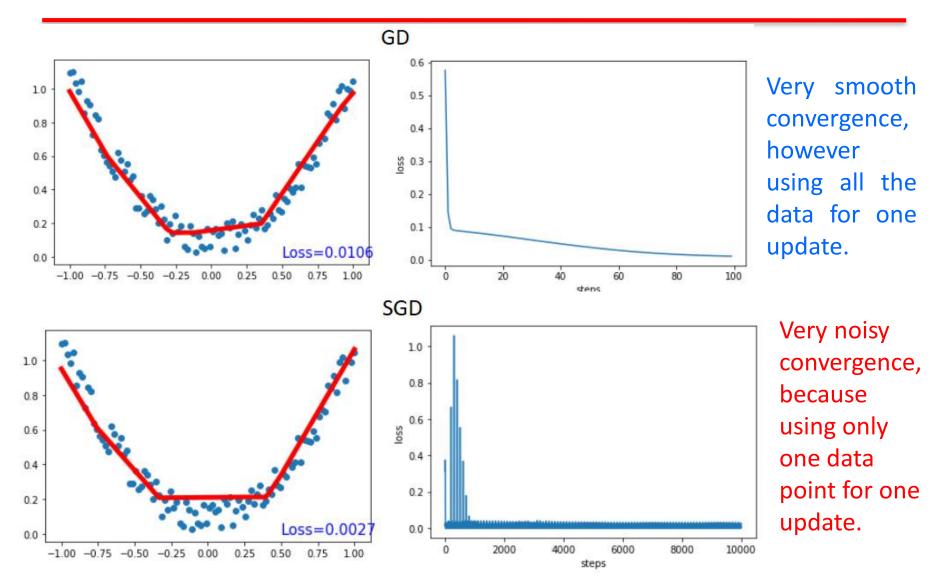
$$j = 0: \ \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m}$$

$$j = 1$$
: $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m}$



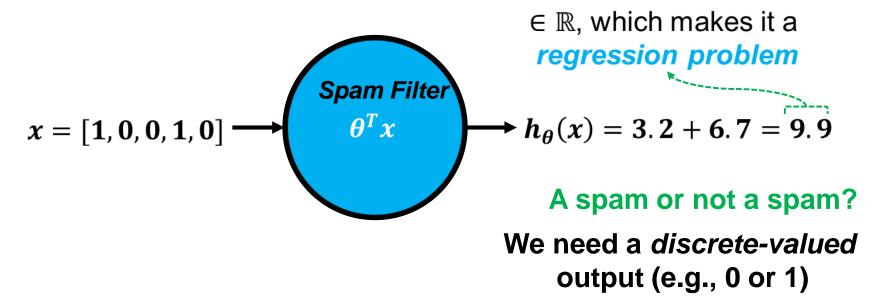
Update θ_0 and θ_1 simultaneously

Batch Vs Stochastic Gradient Descent

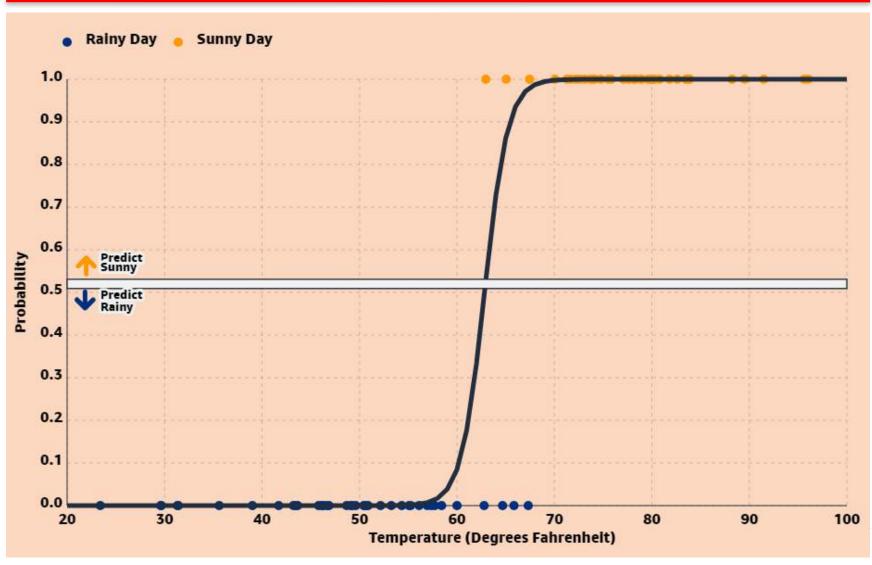


Regression vs. Classification

- What are the possible outputs of the linear regression function $h_{\theta}(x) = \theta^T x$?
 - Real-valued outputs



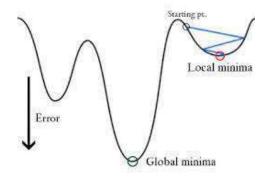
Logistic regression



Source: https://mlu-explain.github.io/logistic-regression/

Loss function for logistic regression

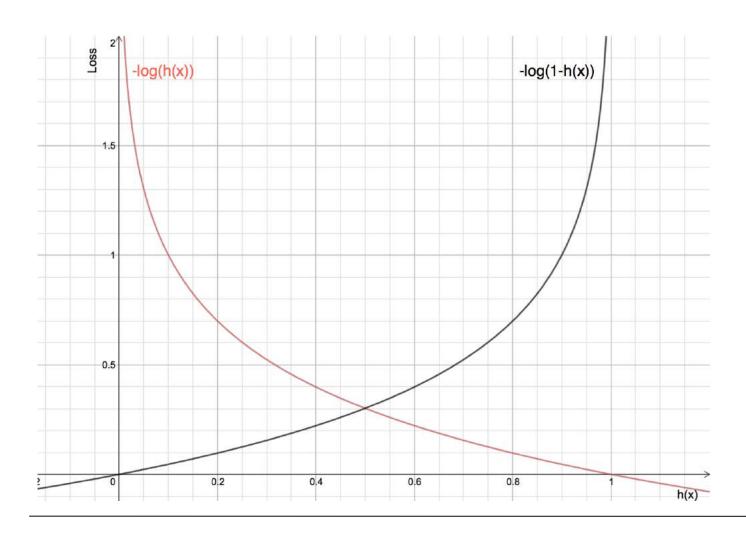
• If you use MSE for Logistic regression, what problems it might create?



 A suitable loss function in logistic regression is called the Log-Loss, or binary cross-entropy. This function is:

$$\text{Log-Loss} = \sum_{i=0}^{n} -(y_i * \log(p_i) + (1-y_i) * \log(1-p_i))$$

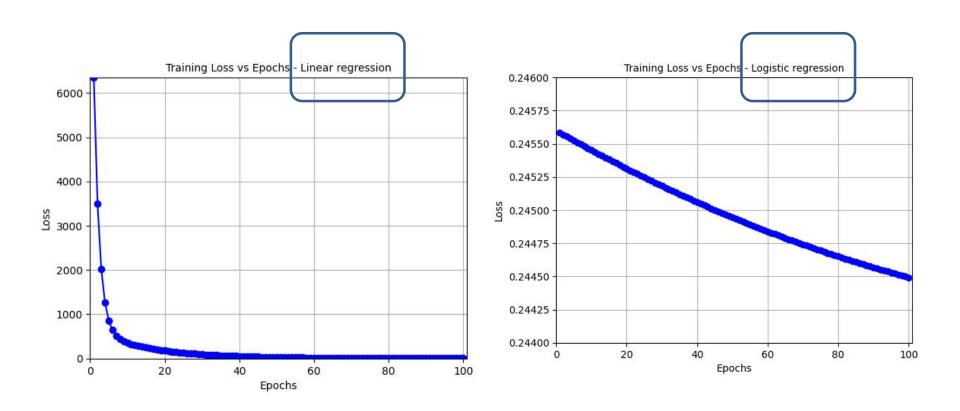
• It penalizes deviations, offering a continuous metric for optimization during model training.



Red: class 1

Black: class 0

Assignment 3 (Due date: 1st March 2024)



Thank you!