

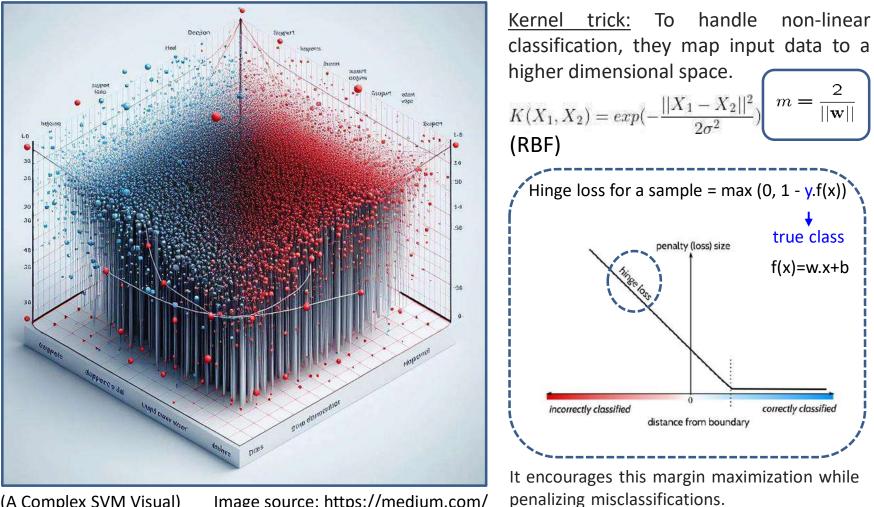
30.04.2024

BITS F464: Machine Learning

UNSUPERVISED LEARNING: K-MEANS, GAUSSIAN MIXTURE MODELS, PCA

Chittaranjan Hota, Sr. Professor Dept. of Computer Sc. and Information Systems hota@hyderabad.bits-pilani.ac.in

Recap: Support Vector Machines



(A Complex SVM Visual) Image source: https://medium.com/

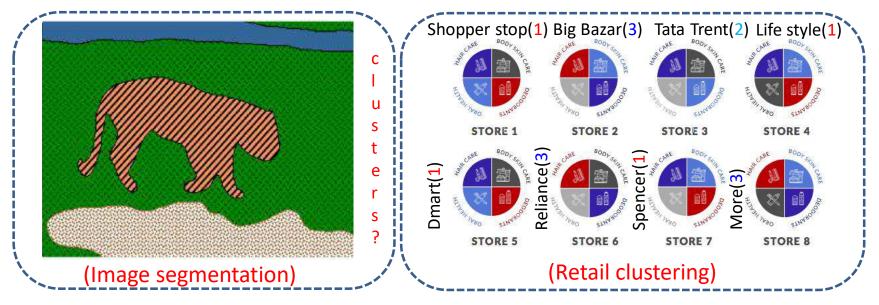
If $y \cdot f(x) \ge 1$, the loss is zero. This indicates that the sample lies outside the margin and is correctly classified. When $y \cdot f(x) < 1$, the loss becomes positive and proportional to the distance from the margin.

Supervised Vs. Un-supervised

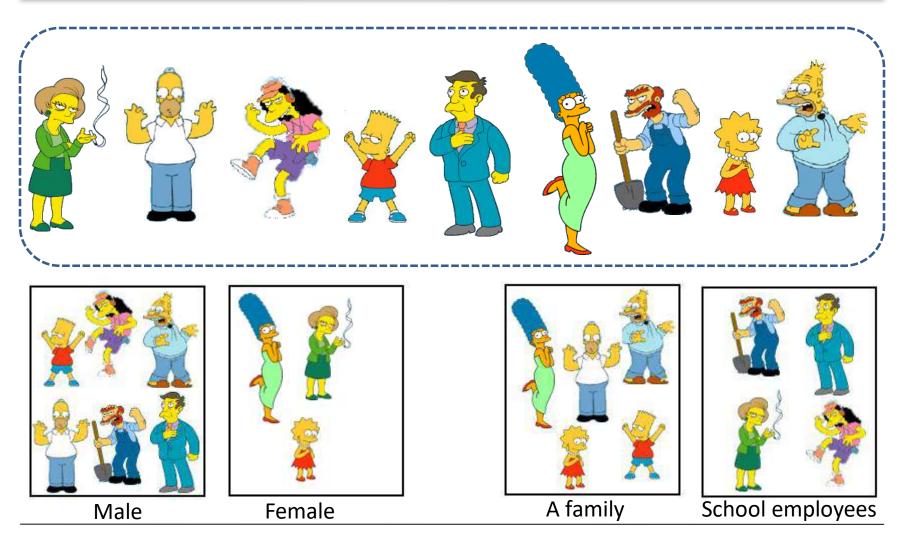
- Supervised: Learning from labelled data
 - Train data: (X, Y) for Input X, Y is the label
 - (Sunny, Evening, Moderate_Temp: Play)
- Unsupervised: Learning from un-labeled data
 - Train data: X

Classification/ Regression.

- Clustering, Dimensionality reduc., Anomaly detection.
- Clustering: Its primary goal is to group similar data points together into clusters based on their intrinsic characteristics or features.



Clustering is Subjective: How to group?



Distance metrics: Euclidean distance, Manhattan distance, Cosine similarity etc.

K-Means Algorithm

- Goal: represent a data set in terms of Κ clusters each of which is summarized by a prototype μ_k
- Initialize then prototypes, iterate between two phases:
 - E-step: assign each data point to nearest prototype
 - M-step: update prototypes to be the cluster means

Cost

Responsibilities assign data points to clusters: $r_{nk} \in \{0, 1\}$ such that:

$$\sum_{k} r_{nk} = 1 \quad (r_{nk}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

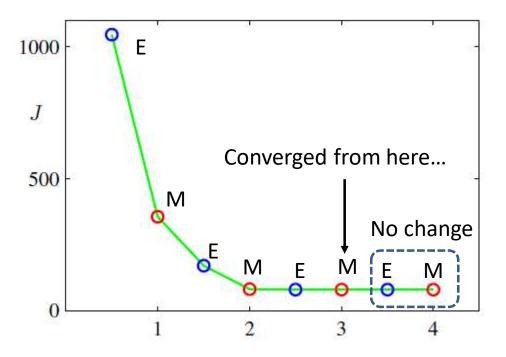
- Example 5 data points and 3 clusters:
- 0 -2 -2 0 2 Distortion measure (Eq.1) ______data K-Means $J = \sum_{k=1}^{N} \sum_{k=1}^{K} r_{nk} \| \mathbf{x}_{n}^{\prime} - \boldsymbol{\mu}_{k} \|^{2}$ Function: responsibilities prototypes Sum of the squares of the distances of each data point to its μ_k .

- How to determine r_{nk} in Eq. (1) keeping μ_k fixed ?
 - As J is a linear function of \mathbf{r}_{nk} , $r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_j \|\mathbf{x}_n \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$
- How to determine μ_k in Eq. (1) keeping r_{nk} fixed ?
 - As J is a quadratic function of μ_k , it can be minimized by setting its derivative to 0:

•
$$2\sum_{n=1}^{N} r_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \qquad \sum \qquad \boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

 The two phases of re-assigning data points to clusters and recomputing the cluster means are repeated in turn until there is no further change in the assignments.

K-Means Convergence



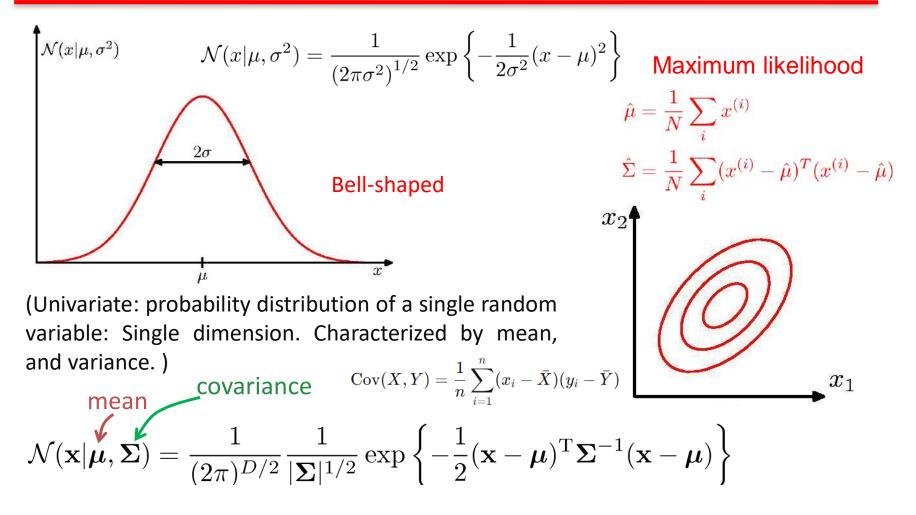
Each E and M successively minimize J, hence algorithm will converge.

How to choose a good value of **K:** Start with K=1. Then increase the value of K (up to a certain upper limit). Usually, the variance (the summation of the square of the distance from the "owner" center for each point) will decrease rapidly. After a certain point, it will decrease slowly. When you see such a behavior, you know you've overshot the K-value. Stop it there and that is the final value of K.

K-Means can converge to a local minima: Solution: K-Means++ initialization

An Application of K-Means: Segmentation

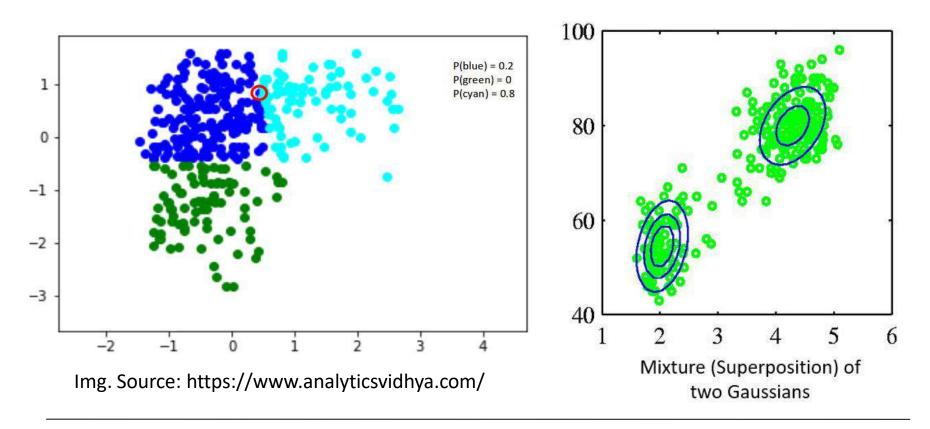
The Gaussian Distribution



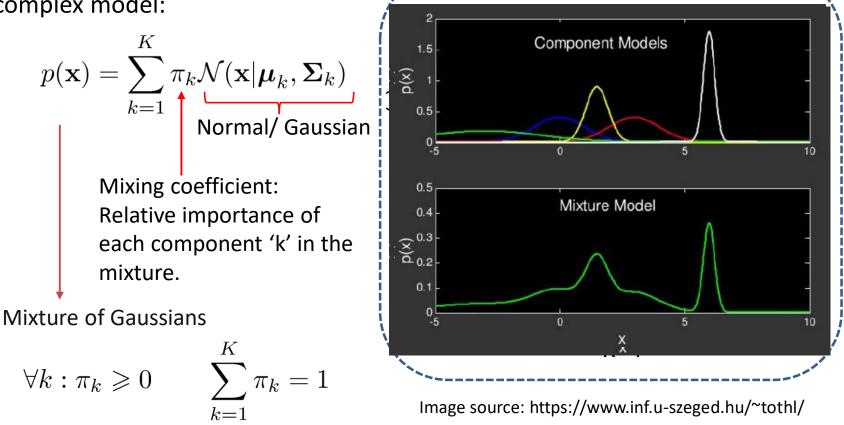
(Multi-variate: joint-probability distribution of multiple random variables. Ellipsoidal surface in n-dimensional space. Characterized by mean vector and co-variance matrix.)

Gaussian Mixture Model (GMM)

• Clusters modeled by Gaussians and not by their Means. EM algorithm assigns data point to a cluster with some probability.

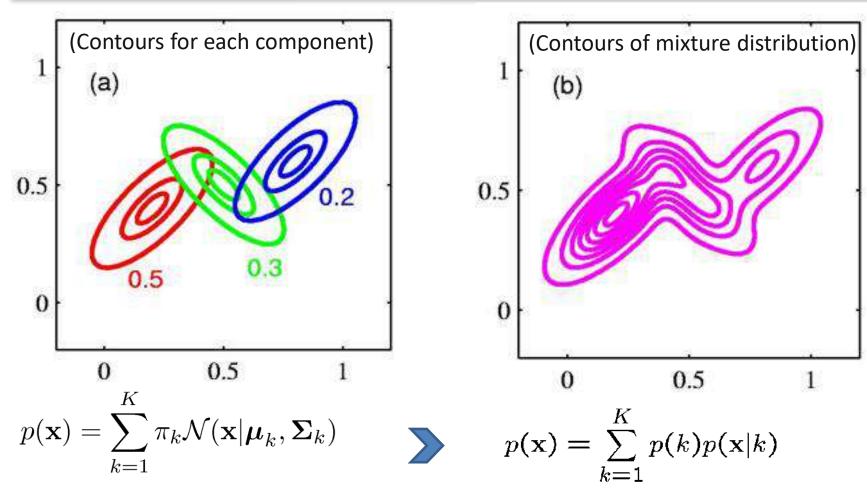


•Combine simple models into a complex model:



By increasing the number of components the curve defined by the mixture model can take basically any shape, so it is much more flexible than just one Gaussian.

Contour Plots of Mixture Models



Maximum likelihood:

 $\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$

Summation of 'k' inside the log is problematic. No closed-form maximum. We will use EM algorithm.

EM Algorithm to solve GMM

Start with parameters describing each cluster: Mean ' μ_c ', Covariance ' Σ_c ', and size ' π_c '.

E-step (Expectation):

For each datum x_i:

Compute 'r_{ic}', the probability that it belongs to cluster 'c':

1. Compute its probability under model 'c'

2. Normalize to sum to one (over clusters 'c')

$$\left(r_{ic} = \frac{\pi_c \mathcal{N}(x_i \; ; \; \mu_c, \Sigma_c)}{\sum_{c'} \pi_{c'} \mathcal{N}(x_i \; ; \; \mu_{c'}, \Sigma_{c'})}\right)$$

If x_i is very likely under the cth Gaussian, it gets high weight. Denominator just makes the sum to one.

Start with assignment probabilities r_{ic}

Update parameters: mean μ_c , Covariance Σ_c , and 'size' π_c

M-step (Maximization):

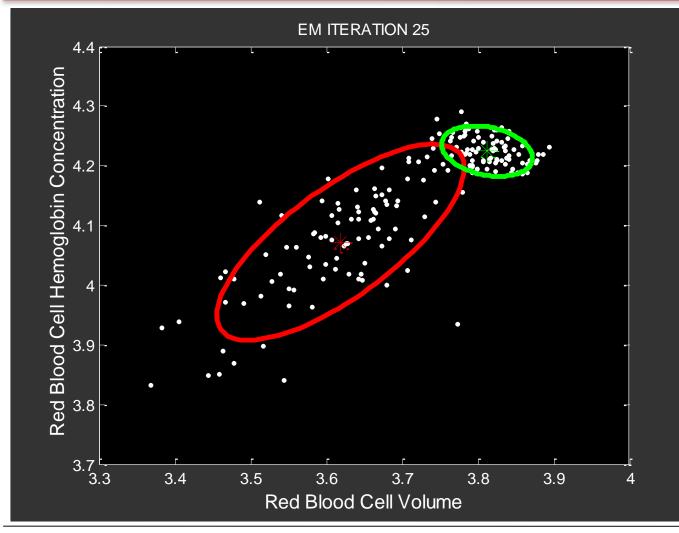
For each cluster (Gaussian) x_c

Update its parameters using the (weighted) data points

$$\begin{split} N_c &= \sum_{i} r_{ic} & (\text{total responsibility allocated to cluster c}) \\ \pi_c &= \frac{N_c}{N} & (\text{fraction of total assigned to cluster c}) \\ \mu_c &= \frac{1}{N_c} \sum_{i} r_{ic} x_i & (\text{weighted mean of assigned data}) \\ \Sigma_c &= \frac{1}{N_c} \sum_{i} r_{ic} (x_i - \mu_c)^T (x_i - \mu_c) & (\text{Weighted covariance}) \end{split}$$

Each 'E' and 'M' step increases the log likelihood: $\log p(\underline{X}) = \sum_{i} \log \left| \sum_{c} \pi_{c} \mathcal{N}(x_{i} ; \mu_{c}, \Sigma_{c}) \right|$

Expectation-Maximization in Action!



Img. Source: P. Smyth's ICML Presentation

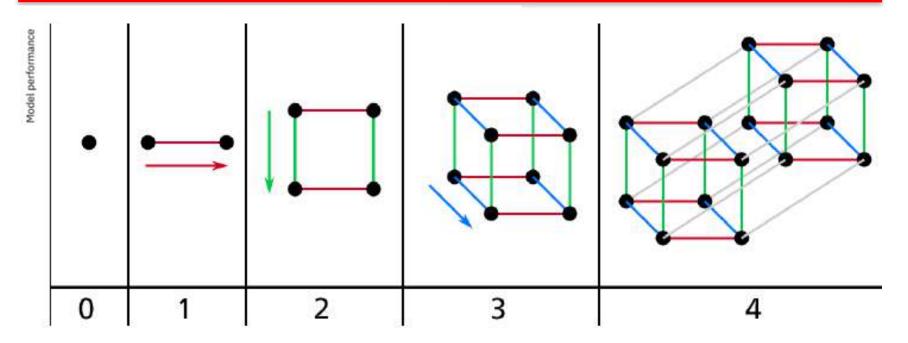
What is Dimensionality Reduction?

• Reducing the number of features/ dimensions of the dataset by preserving as much information as possible while discarding the less important ones.



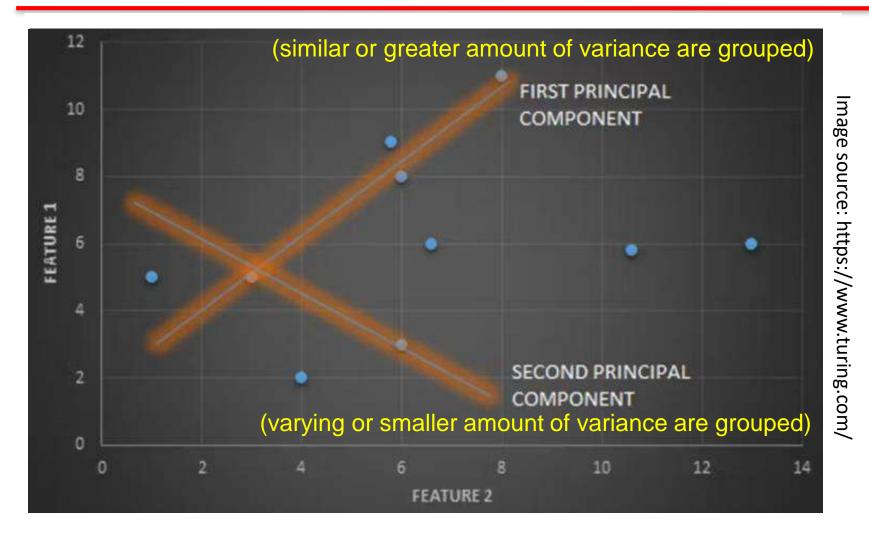
- Ex Tennis: (Service speed, Serve accuracy, Forehand effectiveness, Backhand effectiveness, Net play success) might map to 2 Principal Components.
- Which one might contribute less to both Principal components and hence irrelevant?

Why Dimensionality Reduction?



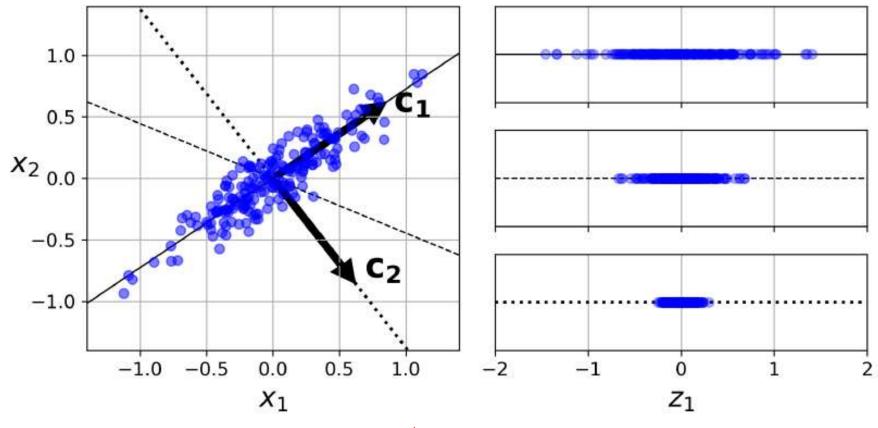
- Computational efficiency: With fewer dimensions, algorithms can run faster and require less memory.
- Visualization: It's challenging to visualize data in more than three dimensions. Dimensionality reduction techniques can help project data into lower-dimensional spaces that can be visualized more easily.

Principal Component Analysis (PCA)



(Scatter plot: Data points distributed across the graph. Can you segregate them easily?)

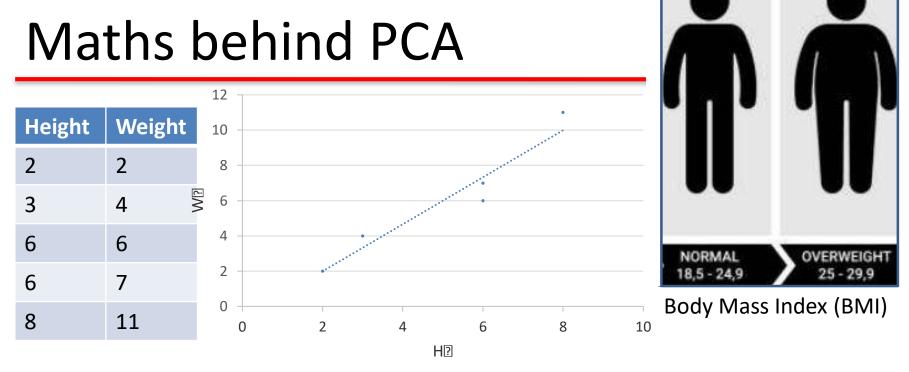
Preserving the Variance: PCA Continued...



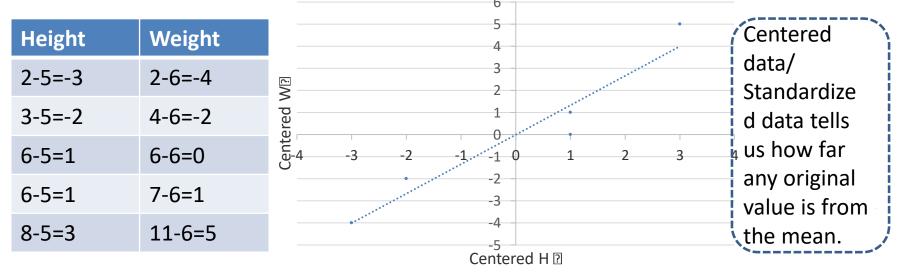
Which one is 1st PC and which one is 2nd PC?

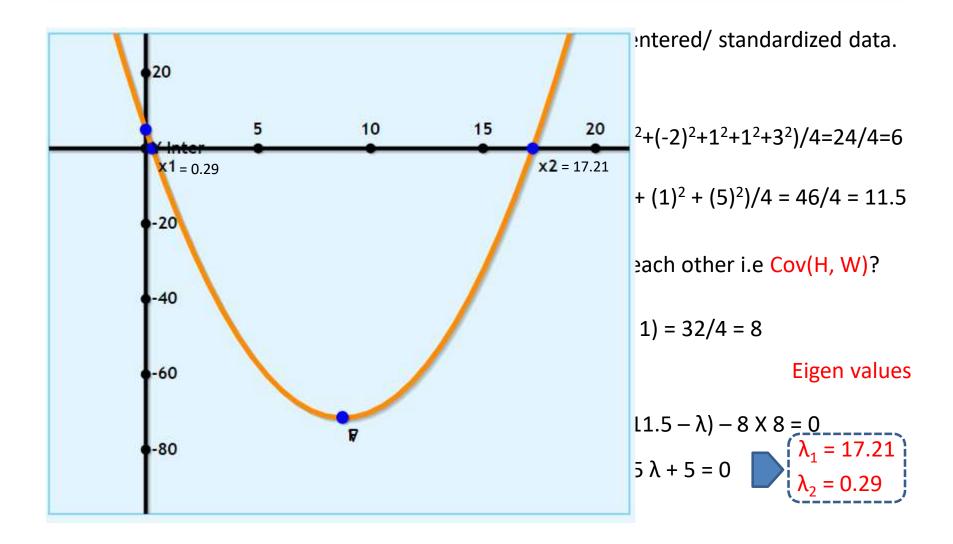
(Projection of dataset into there axes)

Image source: Aurelien Geron's text



• Scatter plot showing the trend line indicating there is a correlation between H and W.





• Next, find out the Eigen vectors to these two values.

1.40

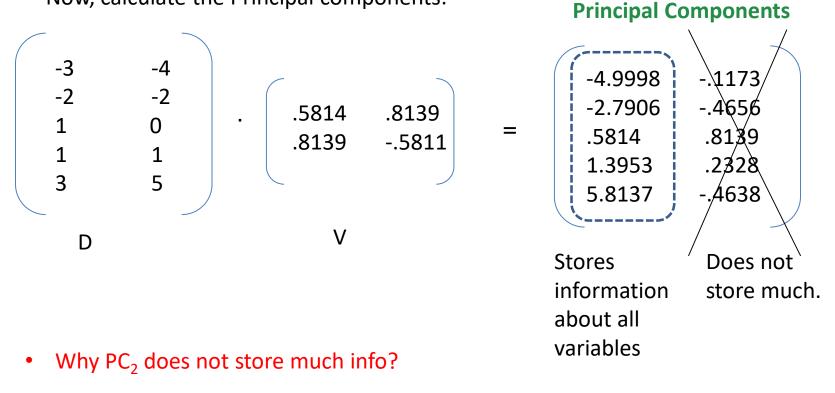
• Now, normalize to unit length:

Length of vector = Sqrt $(1^2 + 1.40^2) = 1.72$ $V_1 = \begin{pmatrix} 1/1.72 \\ 1.40/1.72 \end{pmatrix} = \begin{pmatrix} .5814 \\ .8139 \end{pmatrix}$

Similarly get the Eigen vector of the Covariance matrix for Eigen value 2:

$$v_2 = \left(\begin{array}{c} .8139\\ -.5811 \end{array}\right) \qquad \checkmark \qquad \left(\begin{array}{c} .5814 & .8139\\ .8139 & -.5811 \end{array}\right) \qquad Order the Eigen vectors$$

• Now, calculate the Principal components:



• How much % of total variance is contributed by PC₁?

17.21/17.21+.29 = 98.34%

Thank You!