

BITS F464: Machine Learning

UNSUPERVISED LEARNING: K-MEANS, GAUSSIAN MIXTURE MODELS, PCA

Chittaranjan Hota, Sr. Professor
Dept. of Computer Sc. and Information Systems
hota@hyderabad.bits-pilani.ac.in

Recap: Support Vector Machines

(A Complex SVM Visual) Image source: https://medium.com/

Kernel trick: To handle non-linear classification, they map input data to a higher dimensional space.

$$
K\left(X_{1}, X_{2}\right)=\exp \left(-\frac{\left\|X_{1}-X_{2}\right\|^{2}}{2 \sigma^{2}}\right) \quad m=\frac{2}{\|\mathbf{w}\|}
$$ (RBF)

It encourages this margin maximization while penalizing misclassifications.

- If $y \cdot f(x) \geq 1$, the loss is zero. This indicates that the sample lies outside the margin and is correctly classified.
- When $y \cdot f(x)<1$, the loss becomes positive and proportional to the distance from the margin.

Supervised Vs. Un-supervised

- \int Supervised: Learning from labelled data
- Train data: (X, Y) for Input X, Y is the label
- (Sunny, Evening, Moderate_Temp: Play)
- Unsupervised: Learning from un-labeled data
- Train data: X

Classification/ Regression.

Clustering, Dimensionality reduc., Anomaly detection.

- Clustering: Its primary goal is to group similar data points together into clusters based on their intrinsic characteristics or features.

Clustering is Subjective: How to group?

Female
A family

Male

School employees
Distance metrics: Euclidean distance, Manhattan distance, Cosine similarity etc.

K-Means Algorithm

- Goal: represent a data set in terms of K clusters each of which is summarized by a prototype μ_{k}
- Initialize prototypes, then iterate between two phases:
- E-step: assign each data point to nearest prototype
- M-step: update prototypes to be the cluster means
- Responsibilities assign data points to clusters: $r_{n k} \in\{0,1\}$ such that:

Distortion measure (Eq.1) _data

$$
\sum_{k} r_{n k}=1 \quad\left(r_{n k}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

K-Means
Cost
Function:

- Example 5 data points and 3 clusters:

Continued...

- How to determine $r_{n k}$ in Eq. (1) keeping μ_{k} fixed ?
- As J is a linear function of $\mathrm{r}_{\mathrm{nk},} \quad r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|\mathrm{x}_{n}-\mu_{j}\right\|^{2} \\ 0 & \text { otherwise. }\end{cases}$
- How to determine μ_{k} in Eq. (1) keeping $r_{n k}$ fixed ?
- As J is a quadratic function of μ_{k}, it can be minimized by setting its derivative to 0 :
- $2 \sum_{n=1}^{N} r_{n k}\left(\mathrm{x}_{n}-\mu_{k}\right)=0 \quad \sum \quad \mu_{k}=\frac{\sum_{n} r_{n k} \mathbf{x}_{n}}{\sum_{n} r_{n k}}$
- The two phases of re-assigning data points to clusters and recomputing the cluster means are repeated in turn until there is no further change in the assignments.

K-Means Convergence

Each E and M successively minimize J, hence algorithm will converge.

How to choose a good value of K: Start with K=1. Then increase the value of K (up to a certain upper limit). Usually, the variance (the summation of the square of the distance from the "owner" center for each point) will decrease rapidly. After a certain point, it will decrease slowly. When you see such a behavior, you know you've overshot the K-value. Stop it there and that is the final value of K.

K-Means can converge to a local minima: Solution: K-Means++ initialization

An Application of K-Means: Segmentation

-(Problem) Hard
assignments of data points to clusters: small shift of a data point can flip it to a different cluster.

Solution:
Replace 'hard' clustering of Kmeans with 'soft' probabilistic assignments (Gaussian Mixture Model)

The Gaussian Distribution

$$
\begin{aligned}
& \left\{\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \quad \mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}\right. \\
& \text { Maximum likelihood } \\
& \text { (Univariate: probability distribution of a single random } \\
& \text { variable: Single dimension. Characterized by mean, } \\
& \text { and variance.) } \\
& \operatorname{Cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)\left(y_{i}-\bar{Y}\right) \\
& \hat{\mu}=\frac{1}{N} \sum_{i} x^{(i)} \\
& \text { Bell-shaped } \\
& \hat{\Sigma}=\frac{1}{N} \sum_{i}\left(x^{(i)}-\hat{\mu}\right)^{T}\left(x^{(i)}-\hat{\mu}\right) \\
& \text { mean } \\
& \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
\end{aligned}
$$

(Multi-variate: joint-probability distribution of multiple random variables. Ellipsoidal surface in n-dimensional space. Characterized by mean vector and co-variance matrix.)

Gaussian Mixture Model (GMM)

- Clusters modeled by Gaussians and not by their Means. EM algorithm assigns data point to a cluster with some probability.

Img. Source: https://www.analyticsvidhya.com/

Continued...

-Combine simple models into a complex model:

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N} \underbrace{\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}_{\text {Normal/ Gaussian }}
$$

Mixing coefficient:
Relative importance of each component ' k ' in the mixture.

Mixture of Gaussians

$$
\forall k: \pi_{k} \geqslant 0 \quad \sum_{k=1}^{K} \pi_{k}=1
$$

By increasing the number of components the curve defined by the mixture model can take basically any shape, so it is much more flexible than just one Gaussian.

Contour Plots of Mixture Models

Maximum likelihood:
$\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}$

$$
p(\mathbf{x})=\sum_{k=1}^{K} p(k) p(\mathbf{x} \mid k)
$$

Summation of ' k ' inside the log is problematic. No closed-form maximum.
We will use EM algorithm.

EM Algorithm to solve GMM

Start with parameters describing each cluster:
Mean ' μ_{c} ', Covariance ' Σ_{c} ', and size ' π_{c} '.

E-step (Expectation):

For each datum x_{i} :
Compute ' $r_{i c}$ ', the probability that it belongs to cluster ' c ':

1. Compute its probability under model ' c '
2. Normalize to sum to one (over clusters ' c ')

$$
r_{i c}=\frac{\pi_{c} \mathcal{N}\left(x_{i} ; \mu_{c}, \Sigma_{c}\right)}{\sum_{c^{\prime}} \pi_{c^{\prime}} \mathcal{N}\left(x_{i} ; \mu_{c^{\prime}}, \Sigma_{c^{\prime}}\right)}
$$

If x_{i} is very likely under the $c^{\text {th }}$ Gaussian, it gets high weight.
Denominator just makes the sum to one.

Continued...

Start with assignment probabilities $r_{\text {ic }}$ Update parameters: mean μ_{c}, Covariance Σ_{c}, and 'size' π_{c}

M-step (Maximization):
For each cluster (Gaussian) x_{c}
Update its parameters using the (weighted) data points

$$
\begin{array}{rlrl}
N_{c} & =\sum_{i} r_{i c} & & \text { (total responsibility allocated to cluster c) } \\
\pi_{c} & =\frac{N_{c}}{N} & & \text { (fraction of total assigned to cluster c) } \\
\mu_{c} & =\frac{1}{N_{c}} \sum_{i} r_{i c} x_{i} & & \text { (weighted mean of assigned data) } \\
\Sigma_{c} & =\frac{1}{N_{c}} \sum_{i} r_{i c}\left(x_{i}-\mu_{c}\right)^{T}\left(x_{i}-\mu_{c}\right) & \text { (Weighted covariance) }
\end{array}
$$

Each ' E ' and ' M^{\prime} 'step increases the log likelihood: $\log p(\underline{X})=\sum_{i} \log \left[\sum_{c} \pi_{c} \mathcal{N}\left(x_{i} ; \mu_{c}, \Sigma_{c}\right)\right]$

Expectation-Maximization in Action!

What is Dimensionality Reduction?

- Reducing the number of features/ dimensions of the dataset by preserving as much information as possible while discarding the less important ones.

(A 3D dataset lying close to a 2D subspace)

(The new 2D dataset after reduction)
- Ex Tennis: (Service speed, Serve accuracy, Forehand effectiveness, Backhand effectiveness, Net play success) might map to 2 Principal Components.
- Which one might contribute less to both Principal components and hence irrelevant?

Why Dimensionality Reduction?

- Computational efficiency: With fewer dimensions, algorithms can run faster and require less memory.
- Visualization: It's challenging to visualize data in more than three dimensions. Dimensionality reduction techniques can help project data into lower-dimensional spaces that can be visualized more easily.

Principal Component Analysis (PCA)

[^0]
Preserving the Variance: PCA Continued...

Which one is $1^{\text {st }} P C$ and which one is $2^{\text {nd }} P C$?

(Projection of dataset into there axes)

Maths behind PCA

- Scatter plot showing the trend line indicating there is a correlation between H and W .

Height	Weight
$2-5=-3$	$2-6=-4$
$3-5=-2$	$4-6=-2$
$6-5=1$	$6-6=0$
$6-5=1$	$7-6=1$
$8-5=3$	$11-6=5$

Centered data/ Standardize d data tells us how far any original value is from the mean.

Continued...

Continued...

- Next, find out the Eigen vectors to these two values.
- A.v $=\lambda . v \quad\left(\begin{array}{ll}6 & 8 \\ 8 & 11.5\end{array}\right) \cdot\left(\begin{array}{l}x \\ y\end{array}\right]=17.21\left[\begin{array}{l}x \\ y\end{array}\right)$

- Now, normalize to unit length:

Length of vector $=\operatorname{Sqrt}\left(1^{2}+1.40^{2}\right)=1.72 \quad \searrow \quad \mathrm{v}_{1}=\binom{1 / 1.72}{1.40 / 1.72}=\binom{.5814}{.8139}$
Similarly get the Eigen vector of the Covariance matrix for Eigen value 2:
$\mathrm{v}_{2}=\binom{.8139}{-.5811} \geq\left[\begin{array}{ll}.5814 & .8139 \\ .8139 & -.5811\end{array}\right) \quad \begin{aligned} & \text { Order the Eigen } \\ & \text { vectors }\end{aligned}$

Continued...

- Now, calculate the Principal components:
$\left(\begin{array}{ll}-3 & -4 \\ -2 & -2 \\ 1 & 0 \\ 1 & 1 \\ 3 & 5\end{array}\right) \cdot\left(\begin{array}{ll}.5814 & .8139 \\ .8139 & -.5811 \\ D & \\ V\end{array}\right.$
- Why PC_{2} does not store much info?

Principal Components

17.21/17.21+. 29

- How much \% of total variance is contributed by PC_{1} ? $=98.34 \%$

Thank You!

[^0]: (Scatter plot: Data points distributed across the graph. Can you segregate them easily?)

