
NEURAL NETWORKS: PERCEPTRON, BACK PROPAGATION

Chittaranjan Hota, Sr. Professor
Dept. of Computer Sc. and Information Systems

hota@hyderabad.bits-pilani.ac.in

Birla Institute of Technology and Science Pilani, Hyderabad Campus

2nd Semester 2023-24

BITS F464: Machine Learning

02.04.2024

Recap:

(B) Probabilistic learning:

Takes a Joint probability P(x, y) where x is the input and y is the label and
predicts the most possible known label for the unknown variable using
the Bayes theorem.

EB

A

J M

Naïve Bayes (MAP):

(A) Symbolic learning:

It involves representing knowledge in a symbolic form, often using logical rules
(logical structures) or mathematical functions.

y(x)=wT x + w0 =

wi xi + w0

Ear

(C) Connectionist learning (Artificial Neural Networks) today…

ANNs: Motivating Examples

Image source: https://towardsdatascience.com/

(Russia-Ukrain War: Ukrainians used ANNs to
combine ground-level photos, drone video
footage and satellite imagery to enhance War
Intelligence)

Learning Rewires the Brain

A healthy human brain has around 100 billion neurons (1011), and a neuron
may connect to as many as 100,000 other neurons.

Neurons?

An electrical signal shooting down a nerve cell and then off to others in the brain. Learning strengthens the paths that these signals
take, essentially "wiring" certain common paths through the brain. Image Source: https://www.snexplores.org/ (imagination)

https://www.snexplores.org/

A Nerve Cell: Neuron

What are their computational abstractions in an Artificial Neural Network?

(Img. Source: https://bio.libretexts.org/)

Perceptron: Modelling the Nerve cell

Frank Rosenblatt at IBM 704 (Electronic
profile analyzing computer): a precursor to
the perceptron, 1958.

(Image source: https://news.cornell.edu)

1943

Perceptron: An Example

x0

x1

x2

w1 fg

y = f (g(x)) = 1, if g(x) ≥ 𝜽

= 0, if g(x) < 𝜽



x
1

x
2

.75 .75

What function this neuron computes?

AND
g(x1,x2, …, xn) = g(x) =

Normalizing thresholds
• Why do we need Normalization?



x
1

x
n

x
2

. . .

w
1

w
2

w
n

Advantage: threshold = 0 for all neurons:



x
1

x
n

x
2

. . .

w
1

w
2

w
n

1



y = f (g(x)) = 1, if - ≥ 0

= 0, Otherwise

𝜽X1 +

Bias





n

i

iinn xwwxwxwxwwxy
1

022110 ,,)(

Normalized examples

INPUT: x1 = 1, x2 = 1

1*-1 + .75*1 + .75*1 = .5 >= 0  OUTPUT: 1

INPUT: x1 = 1, x2 = 0

1*-1 +.75*1 + .75*0 = -.25 < 1  OUTPUT: 0

INPUT: x1 = 0, x2 = 1

1*-1 +.75*0 + .75*1 = -.25 < 1  OUTPUT: 0

INPUT: x1 = 0, x2 = 0

1*-1 +.75*0 + .75*0 = -1 < 1  OUTPUT: 0



x
1

x
2

.75
.75-1

1

INPUT: x1 = 1, x2 = 1

1*-.5 + .75*1 + .75*1 = 1 >= 0  OUTPUT: 1

INPUT: x1 = 1, x2 = 0

1*-.5 +.75*1 + .75*0 = .25 > 1  OUTPUT: 1

INPUT: x1 = 0, x2 = 1

1*-.5 +.75*0 + .75*1 = .25 < 1  OUTPUT: 1

INPUT: x1 = 0, x2 = 0

1*-.5 +.75*0 + .75*0 = -.5 < 1  OUTPUT: 0



x
1

x
2

.75
.75-.5

1

OR

AND

1

x2

x1

-1

.75

.75
0

Perceptron as a Decision Surface

y = -1

y = +1

(A 2-dimensional space)

• A perceptron can only solve linearly separable classification problems.

AND OR

How about
XOR?

• Perceptron is a Linear Binary Classifier

Activation Functions in a Perceptron

x

y

y(x)

y (x) = 1, if - ≥ 0

= 0, Otherwise

𝜽X1 +

(Step Function)

y (x) = 1, if > 0

= 0, for equal to 0

-𝜽X1 +

= -1, for less than 0

(Sign Function)

What about other activation functions like Sigmoid, Gaussian etc.? Multi-layer Perceptron

x

y

-1

+1

Perceptron Training Example

An example: A perceptron updating its linear boundary as more
training examples are added. (Image Source: Wiki)

Gradient Descent:
changing the
weight a small
amount decreases
the training error

Perceptron Training Algorithm

Algorithm: Perceptron Learning Algorithm

P  inputs with label +

N  inputs with label –

Initialize w  Random value;

while (!convergence) do

Pick random x ∈ P ⋃ N;

if (x ∈ P && w.x <0) then

w = w + x;

endif;

if (x ∈ N && w.x ≥ 0) then

w = w - x;

endif;

endwhile;

// Algorithm converges when all the
inputs are classified correctly.

Image Source: PRML, Bishop

Run through the algorithm: AND

(Training Set)



1 x
2

x
1

-0.9
0.6

0.2

x1 = 1, x2 = 1: -0.9*1 + 0.6*1 + 0.2*1 = -0.1  0 WRONG

x1 = 1, x2 = 0: -0.9*1 + 0.6*1 + 0.2*0 = -0.3  0 OK

x1 = 0, x2 = 1: -0.9*1 + 0.6*0 + 0.2*1 = -0.7  0 OK

x1 = 0, x2 = 0: -0.9*1 + 0.6*0 + 0.2*0 = -0.9  0 OK

New Weights



1 x
2

x
1

0.1
1.6

1.2

Continued…



1 x
2

x
1

-2.9
0.6

0.2

x1 = 1, x2 = 1: -2.9*1 + 0.6*1 + 0.2*1 = -2.1  0 WRONG

x1 = 1, x2 = 0: -2.9*1 + 0.6*1 + 0.2*0 = -2.3  0 OK

x1 = 0, x2 = 1: -2.9*1 + 0.6*0 + 0.2*1 = -2.7  0 OK

x1 = 0, x2 = 0: -2.9*1 + 0.6*0 + 0.2*0 = -2.9  0 OK

w0 = -2.9 + 1 = -1.9

w1 = 0.6 + 1 = 1.6

w2 = 0.2 + 1 = 1.2

New Weights



1 x
2

x
1

-1.9
1.6

1.2

x1 = 1, x2 = 1: -1.9*1 + 1.6*1 + 1.2*1 = 0.9  1 OK

x1 = 1, x2 = 0: -1.9*1 + 1.6*1 + 1.2*0 = -0.3  0 OK

x1 = 0, x2 = 1: -1.9*1 + 1.6*0 + 1.2*1 = -0.7  0 OK

x1 = 0, x2 = 0: -1.9*1 + 1.6*0 + 1.2*0 = -1.9  0 OK

Convergence Reached. Halt! w0 = -1.9, w1 = 1.6, w2 = 1.2

Perceptron Training Rule: Recap

wi  wi + wi (t - o) xi

Why should this update rule converge toward successful
weight values?

If training data is linearly separable and is sufficiently small.

Let us see this through an example:

When all (, (t-o) and xi) are
positive, wi will increase and vice
versa:

xi = 0.8, = 0.1, t = 1, o = -1:

 wi = 0.1(1-(-1))0.8 = 0.16

If t = -1, o = 1, what will happen?

Where,

•t = target value

•o = perceptron output

• is a small constant (e.g, 0.1) called the learning rate.

Gradient Descent and the Delta Rule

• If the training examples are NOT linearly separable (which the
Perceptron rule cannot handle), the delta rule converges towards a
best-fit approximation to the target concept.

• The key-idea behind the delta rule is to use Gradient descent, a basis
for Back-propagation algorithm.

• Delta rule is best understood by considering an un-thresholded
Perceptron, i.e. a linear unit without threshold (or activation function).

• Let the linear unit be characterized by: o = w0 + w1x1 + w2x2 + … + wnxn

• Let us learn wi’s that minimize the squared error:

ADALINE: adaptive linear neural network based on MSE. Or Least mean square (LMS) Widrow Hoff

Visualizing Gradient Descent: Recap

w0 and w1: The two weights of a linear unit and E is the error.

Parabolic
(Convex)
with a single
global
minimum.

Derivation of Gradient Descent: Recap

• How can we calculate the direction of steepest descent along the error
surface?

• Gradient:

• When interpreted as a vector in weight space, the gradient specifies
the direction that produces the steepest increase in E .

• The negative of this vector therefore gives the direction of steepest
decrease.

• The training rule: Where:

(1)

(2)

Substituting (2) in (1):

Gradient Descent & Stochastic Gradient Descent

1. Initialize each wi to some small random value

2. Until the termination condition is met {

1. Initialize each wi to 0

2. For each training example do {

1. Input the instance to the Linear unit and compute output ‘o’

2. For each Linear unit weight wi do

3. }

3. For each Linear unit weight wi do {

4. }

3. }

GD: the error is summed over all examples before updating weights. It might miss global minima when multiple
local minima are present. In SGD/Incremental GD, weights are updated upon examining each training example.

X

Alternatively, SGD computes ‘E’ for each training ex:

Inadequacy of Perceptron

• Many simple problems are NOT linearly separable.

x
1

x
2

0 1

11

XOR function

0

However, you can compute XOR by introducing a new,
hidden unit as shown in the left.

0.1

x
2

1.5

x
1

1.5

-3.5

1.5

1 1

How to build such a multi-layer network?

• Output is in the form of binary (0 or 1), NOT in the
form of continuous values or probabilities.

• No memory and hence treat each input
independently. Hence, limited ability to understand
sequential or temporal patterns in data.

?

Every classification problem has a Perceptron solution if
enough hidden layers are used.

Minsky & Papert’s paper: Pretty much killed ANN research in 1970. Rebirth in 1980: faster
parallel computers, newer algorithms (BPN,…), newer architectures (Hopfield nets).

Hidden units in a Multi-layer Perceptron (MLP)

- The addition of hidden units allows the network to develop
complex feature detectors (i.e., internal representations)

- e.g., Optical Character Recognition (OCR)

• perhaps one hidden unit

"looks for" a horizontal bar

• another hidden unit

"looks for" a diagonal

• another looks for the vertical base

- The combination of specific hidden units
indicates a 7.

Multiple Hidden Layers

Input

layer

First

hidden

layer

Second

hidden

layer

Output

layer

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

I
n
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

I
N
P
U
T

O
U
T
P
U
T

Input
Layer

Hidden
Layer1

Hidden
Layer2

Output
Layer

What does a hidden layer hide?

Hides it’s desired output. Neurons in the hidden layer cannot be observed
through the input/output behaviour of the network.

No. of nodes in a layer and no. of layers? Expt. & tuning. Nodes too few: can’t learn, Too many: poor generalization

Decision Surface in a Multilayer Network: An Ex.

Image source: Tom Mitchell’s text

Image source: Tom Mitchell's Text

Output: vowel sound occurring in the context “h__d”

Input to the Network: two features from spectral analysis of a spoken sound

An Example 3-layer Perceptron

hidden units

Hidden Units: Sigmoid, Tanh, ReLU etc…

𝑦 =softmax(z), where 𝑧 = 𝑊Tℎ+𝑏
For a multiclass classification.

z

b

i

n

a

r

y

What is Sparse Connectivity and what are its’ Pros and Cons? Leaving out some links.

Activation Function: Sigmoid

During backpropagation, the gradients
of the weights in the early layers of the
network (closer to the input) can
become very small as they are
multiplied by small gradients of later
layers using the sigmoid function.

Vanishing Gradient

Where should you worry much? Shallow or Deep NNs?

• The hyperbolic tangent (tanh) activation function is another
commonly used non-linear activation function in neural networks.

• The tanh function squashes the input values to the range [-1, 1]. It is
similar to the sigmoid function, but its output is zero-centered,
meaning that its output is centered around zero, unlike the sigmoid
function which outputs values between 0 and 1.

Activation Function: Tanh

Suffers from same Vanishing gradient problem.

Used in RNNs,
and LSTMs…

Activation Functions: ReLU

Rectified linear unit function (ReLU) provides a very simple nonlinear
transformation:

ReLU(x)=max(x,0) Retains only positive elements and discards negative ones.

The reason for using the ReLU is that its derivatives are particularly well
behaved: either they vanish or they just let the argument through. This makes
optimization better behaved and it reduces the issue of the vanishing gradient
problem.
Unlike sigmoid or tanh which saturate in certain regions (i.e., the gradients become very close to zero), ReLU does not
saturate in the positive region for positive inputs, the derivative of ReLU is always 1. Hence, during backpropagation,
gradients do not vanish for positive values, allowing for faster and more effective learning.

Gradient Descent for Sigmoid Unit

But we know:

Backpropagation Training Algorithm (BPN)

• Initialize weights (typically random!)

• Keep doing epochs

• For each example ‘e’ in the training set do

• forward pass to compute

• O = neural-net-output (network, e)

• miss = (T-O) at each output unit

• backward pass to calculate deltas to weights

• update all weights

• end

• until tuning set error stops improving

Error Backpropagation

• First calculate error of output units and use this to change the
top layer of weights.

output

hidden

input

Current output: oj=0.2

Correct output: tj=1.0

Error δj = oj(1–oj)(tj–oj)

0.2(1–0.2)(1–0.2)=0.128

Update weights into j

ijji ow 

(Look for Global minima)

Error Backpropagation continued…

• Next calculate error for hidden units based on errors on the
output units it feeds into.

output

hidden

input


k

kjkjjj woo )1(

Error Backpropagation continued…

• Finally update bottom layer of weights based on errors
calculated for hidden units.

output

hidden

input


k

kjkjjj woo )1(

Update weights into j

ijji ow 

Assignment 5: BPNs for Predicting Age of Abalones

La
b

el
 (

n
o

 o
f

ri
n

gs

w
ill

 d
ec

id
e

th
e

ag
e)

Thank You!

