

BITS F464: Machine Learning

NEURAL NETWORKS: PERCEPTRON, BACK PROPAGATION

Chittaranjan Hota, Sr. Professor
Dept. of Computer Sc. and Information Systems
hota@hyderabad.bits-pilani.ac.in

Recap:

(A) Symbolic learning:

It involves representing knowledge in a symbolic form, often using logical rules (logical structures) or mathematical functions.
Gini Index $=1-\sum_{i=1}^{n}\left(P_{i}\right)^{2}$
(B) Probabilistic learning:

$$
\begin{gathered}
\mathrm{y}(\mathrm{x})=\mathrm{w}^{\top} \mathrm{x}+\mathrm{w}_{0}= \\
\sum_{i=1}^{d} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}+\mathrm{w}_{0}
\end{gathered}
$$

Takes a Joint probability $\mathrm{P}(\mathrm{x}, \mathrm{y})$ where x is the input and y is the label and predicts the most possible known label $\tilde{y} \in Y$ for the unknown variable \tilde{x} using the Bayes theorem.

(C) Connectionist learning (Artificial Neural Networks) today...

ANNs: Motivating Examples

Image source: https://towardsdatascience.com/

(Russia-Ukrain War: Ukrainians used ANNs to combine ground-level photos, drone video footage and satellite imagery to enhance War Intelligence)

Learning Rewires the Brain

An electrical signal shooting down a nerve cell and then off to others in the brain. Learning strengthens the paths that these signals take, essentially "wiring" certain common paths through the brain. Image Source: https://www.snexplores.org/ (imagination)
A healthy human brain has around 100 billion neurons (10^{11}), and a neuron may connect to as many as 100,000 other neurons.

A Nerve Cell: Neuron

What are their computational abstractions in an Artificial Neural Network?

Perceptron: Modelling the Nerve cell

Perceptron: An Example

Normalizing thresholds

- Why do we need Normalization?

$$
y(x)=w_{0}+w_{1} x_{1}+w_{2} x_{2}, \cdots, w_{n} x_{n}=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}
$$

Advantage: threshold $=0$ for all neurons:

$$
\begin{aligned}
y=f(g(x)) & =1, \quad \text { if }-\boldsymbol{\theta} \times 1+\sum_{i=1}^{n} w_{i} x_{i} \geq 0 \\
& =0, \text { Otherwise }
\end{aligned}
$$

Normalized examples

AND

OR

INPUT: $x_{1}=1, x_{2}=1$

$$
1 *-1+.75 * 1+.75 * 1=.5>=0 \quad \rightarrow \text { OUTPUT: } 1
$$

INPUT: $x_{1}=1, x_{2}=0$

$$
1^{*}-1+.75^{*} 1+.75^{*} 0=-.25<1 \quad \rightarrow \text { OUTPUT: } 0
$$

INPUT: $x_{1}=0, x_{2}=1$

$$
1^{*}-1+.75 * 0+.75^{*} 1=-.25<1 \quad \rightarrow \text { OUTPUT: } 0
$$

INPUT: $x_{1}=0, x_{2}=0$

$$
1^{*}-1+.75^{*} 0+.75^{*} 0=-1<1 \quad \rightarrow \text { OUTPUT: } 0
$$

INPUT: $x_{1}=1, x_{2}=1$

$$
1^{*}-.5+.75^{*} 1+.75^{*} 1=1>=0 \quad \rightarrow \text { OUTPUT: } 1
$$

INPUT: $x_{1}=1, x_{2}=0$

$$
1^{*}-.5+.75^{*} 1+.75^{*} 0=.25>1 \quad \Rightarrow \text { OUTPUT: } 1
$$

INPUT: $x_{1}=0, x_{2}=1$

$$
1^{*}-.5+.75^{*} 0+.75^{*} 1=.25<1 \quad \rightarrow \text { OUTPUT: } 1
$$

INPUT: $x_{1}=0, x_{2}=0$

$$
1^{*}-.5+.75^{*} 0+.75^{*} 0=-.5<1 \quad \rightarrow \text { OUTPUT: } 0
$$

Perceptron as a Decision Surface

- A perceptron can only solve linearly separable classification problems.

How about XOR?

Activation Functions in a Perceptron

What about other activation functions like Sigmoid, Gaussian etc.? Multi-layer Perceptron

Perceptron Training Example

An example: A perceptron updating its linear boundary as more training examples are added. (Image Source: Wiki)

Perceptron Training Algorithm

Image Source: PRML, Bishop

Algorithm: Perceptron Learning Algorithm

$P \leftarrow$ inputs with label + $\mathrm{N} \leftarrow$ inputs with label Initialize w \leftarrow Random value; while (!convergence) do Pick random $x \in P \cup N$; if $(x \in P \& \& w . x<0)$ then

$$
\mathrm{w}=\mathrm{w}+\mathrm{x}
$$

endif;
if $(x \in N \& \& w . x \geq 0)$ then
w = w - x;
endif;
endwhile;
// Algorithm converges when all the inputs are classified correctly.

Run through the algorithm: AND

$$
\begin{aligned}
& x_{1}=1, x_{2}=1 \rightarrow 1 \\
& x_{1}=1, x_{2}=0 \rightarrow 0 \\
& x_{1}=0, x_{2}=1 \rightarrow 0 \\
& x_{1}=0, x_{2}=0 \rightarrow 0
\end{aligned}
$$

$$
x_{1}=1, x_{2}=1:
$$

$$
-0.9^{*} 1+0.6^{* 1}+0.2^{*} 1
$$

$=-0.1 \rightarrow 0$ WRONG
$x_{1}=1, x_{2}=0$:
$-0.9^{*} 1+0.6^{*} 1+0.2^{*} 0$
$=-0.3 \rightarrow 0$ OK
$x_{1}=0, x_{2}=1$:
$-0.9 * 1+0.6^{*} 0+0.2^{*} 1$
$=-0.7 \rightarrow 0$ OK
$x_{1}=0, x_{2}=0: \quad-0.9^{*} 1+0.6^{*} 0+0.2^{*} 0$
$=-0.9 \rightarrow 0$ OK
(Training Set)

$$
\begin{aligned}
& \mathrm{w}_{0}=-0.9+1=0.1 \\
& \mathrm{w}_{1}=0.6+1=1.6 \\
& \mathrm{w}_{2}=0.2+1=1.2
\end{aligned}
$$

\longrightarrow New Weights

$$
\begin{aligned}
& \mathrm{w}_{0}=0.1-1-1-1=-2.9 \\
& \mathrm{w}_{1}=1.6-1-0-0=0.6 \\
& \mathrm{w}_{2}=1.2-0-1-0=0.2
\end{aligned}
$$

$$
\begin{array}{llll}
x_{1}=1, x_{2}=1: & 0.1^{*} 1+1.6^{*} 1+1.2^{*} 1 & =2.9 \rightarrow 1 \text { OK } \\
x_{1}=1, x_{2}=0: & 0.1^{*} 1+1.6^{*} 1+1.2^{*} 0 & =1.7 \rightarrow 1 \text { WRONG } \\
x_{1}=0, x_{2}=1: & 0.1^{*} 1+1.6^{*} 0+1.2^{*} 1 & =1.3 \rightarrow 1 \text { WRONG } \\
x_{1}=0, x_{2}=0: & 0.1^{*} 1+1.6^{*} 0+1.2^{*} 0 & =0.1 \rightarrow 1 \text { WRONG }
\end{array}
$$

Continued...

Perceptron Training Rule: Recap

$W_{i} \leftarrow W_{i}+\Delta W_{i} \longrightarrow \eta(t-0) x_{i}^{\text {,'Let us see this through an example: }}$
$w_{i} \leftarrow w_{i}+\Delta w_{i} \longrightarrow \eta(t-0) x_{i}^{\prime}$ When all (η, ($\mathrm{t}-\mathrm{o}$) and x_{i}) are positive, w_{i} will increase and vice
Where,
-t = target value

- o = perceptron output versa:
$\mathrm{x}_{\mathrm{i}}=0.8, \eta=0.1, \mathrm{t}=1, \mathrm{o}=-1$:
$\rightarrow \Delta \cdot \mathrm{w}_{\mathrm{i}}=0.1(1-(-1)) 0.8=0.16$
If $\mathrm{t}=-1, \mathrm{o}=1$, what will happen?
- $\quad \eta$ a small constant (e.g, 0.1) called the learning rate.

Why should this update rule converge toward successful weight values?

If training data is linearly separable and η is sufficiently small.

Gradient Descent and the Delta Rule

- If the training examples are NOT linearly separable (which the Perceptron rule cannot handle), the delta rule converges towards a best-fit approximation to the target concept.
- The key-idea behind the delta rule is to use Gradient descent, a basis for Back-propagation algorithm.
- Delta rule is best understood by considering an un-thresholded Perceptron, i.e. a linear unit without threshold (or activation function).
- Let the linear unit be characterized by: $o=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}$
- Let us learn \mathbf{w}_{i} 's that minimize the squared error: $E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D}\left(t_{d}-o_{d}\right)^{2}$

Visualizing Gradient Descent: Recap

w_{0} and w_{1} : The two weights of a linear unit and E is the error.

Derivation of Gradient Descent: Recap

- How can we calculate the direction of $\leq \frac{\partial E}{\partial w_{i}}=\frac{\partial}{\partial w_{i}} \frac{1}{2} \sum_{d}\left(t_{d}-o_{d}\right)^{2}$
surface?
- Gradient:

$$
\nabla E[\vec{w}] \equiv\left[\frac{\partial E}{\partial w_{0}}, \frac{\partial E}{\partial w_{1}}, \cdots \frac{\partial E}{\partial w_{n}}\right]
$$

- When interpreted as a vector in weig the direction that produces the steepes
- The negative of this vector therefore $\frac{\partial E}{\partial w_{i}}=\sum_{d}\left(t_{d}-o_{d}\right)\left(-x_{i, d}\right)$ decrease.
- The training rule: $\vec{w} \leftarrow \vec{w}+\Delta \vec{w} \quad$ Where: \quad Substituting (2) in (1):

$$
\begin{equation*}
\Delta \vec{w}=-\eta \nabla E[\vec{w}] \quad \Delta w_{i}=-\eta \frac{\partial E}{\partial w_{i}}(1) \quad \Delta w_{i}=\eta \sum_{d \in D}\left(t_{d}-o_{d}\right) \boldsymbol{x}_{\boldsymbol{i} \boldsymbol{d}} \tag{1}
\end{equation*}
$$

Gradient Descent \& Stochastic Gradient Descent

1. Initialize each w_{i} to some small random value
2. Until the termination condition is met \{
3. Initialize each Δw_{i} to 0
4. For each training example do \{
5. Input the instance to the Linear unit and compute output ' o '
6. For each Linear unit weight w_{i} do

$$
\Delta w_{i} \leftarrow \Delta w_{i}+\eta(t-o) x_{i} \rightarrow w_{i} \leftarrow w_{i}+\eta(t-o) x_{i}
$$

3. \}
4. For each Linear unit weight w_{i} do \{
5.
6. \} Alternatively, SGD computes 'E' for each training ex: $E_{d}(\vec{w})=\frac{1}{2}\left(t_{d}-o_{d}\right)^{2}$

GD: the error is summed over all examples before updating weights. It might miss global minima when multiple local minima are present. In SGD/Incremental GD, weights are updated upon examining each training example.

Inadequacy of Perceptron

- Many simple problems are NOT linearly separable.
- Output is in the form of binary (0 or 1), NOT in the form of continuous values or probabilities.
- No memory and hence treat each input independently. Hence, limited ability to understand sequential or temporal patterns in data.

However, you can compute XOR by introducing a new, hidden unit as shown in the left.

Every classification problem has a Perceptron solution if enough hidden layers are used.
How to build such a multi-layer network?
Minsky \& Papert's paper: Pretty much killed ANN research in 1970. Rebirth in 1980: faster parallel computers, newer algorithms (BPN,...), newer architectures (Hopfield nets).

Hidden units in a Multi-layer Perceptron (MLP)

- The addition of hidden units allows the network to develop complex feature detectors (i.e., internal representations)
- e.g., Optical Character Recognition (OCR)
- perhaps one hidden unit
"looks for" a horizontal bar
- another hidden unit
"looks for" a diagonal
- another looks for the vertical base
- The combination of specific hidden units
 indicates a 7.

Multiple Hidden Layers

What does a hidden layer hide?
Hides it's desired output. Neurons in the hidden layer cannot be observed through the input/output behaviour of the network.

Decision Surface in a Multilayer Network: An Ex.

Image source: Tom Mitchell's Text

An Example 3-layer Perceptron

[^0]
Activation Function: Sigmoid

Sigmoid function and it's derivative:

During backpropagation, the gradients of the weights in the early layers of the network (closer to the input) can become very small as they are multiplied by small gradients of later layers using the sigmoid function.

Nice property: $\frac{d \sigma(x)}{d x}=\sigma(x)(1-\sigma(x)) \quad$ Vanishing Gradient

Where should you worry much? Shallow or Deep NNs?

Activation Function: Tanh

- The hyperbolic tangent (tanh) activation function is another commonly used non-linear activation function in neural networks.
- The tanh function squashes the input values to the range $[-1,1]$. It is similar to the sigmoid function, but its output is zero-centered, meaning that its output is centered around zero, unlike the sigmoid function which outputs values between 0 and 1 .

Used in RNNs, and LSTMs...

Suffers from same Vanishing gradient problem.

Activation Functions: ReLU

Rectified linear unit function (ReLU) provides a very simple nonlinear transformation:
$\operatorname{ReLU}(x)=\max (x, 0) \rightarrow$ Retains only positive elements and discards negative ones.

The reason for using the ReLU is that its derivatives are ${ }^{\times}$particularly well behaved: either they vanish or they just let the argument through. This makes optimization better behaved and it reduces the issue of the vanishing gradient problem.

[^1]
Gradient Descent for Sigmoid Unit

$$
\begin{aligned}
\frac{\partial E}{\partial w_{i}} & =\frac{\partial}{\partial w_{i}} \frac{1}{2} \sum_{d \in D}\left(t_{d}-o_{d}\right)^{2} \\
& =\frac{1}{2} \sum_{d} \frac{\partial}{\partial w_{i}}\left(t_{d}-o_{d}\right)^{2} \\
& =\frac{1}{2} \sum_{d} 2\left(t_{d}-o_{d}\right) \frac{\partial}{\partial w_{i}}\left(t_{d}-o_{d}\right) \\
& =\sum_{d}\left(t_{d}-o_{d}\right)\left(-\frac{\partial o_{d}}{\partial w_{i}}\right) \\
& =-\sum_{d}\left(t_{d}-o_{d}\right) \frac{\partial o_{d}}{\partial n e t_{d}} \frac{\partial n e t_{d}}{\partial w_{i}}
\end{aligned}
$$

But we know:

$$
\begin{gathered}
\frac{\partial o_{d}}{\partial n e t_{d}}=\frac{\partial \sigma\left(n e t_{d}\right)}{\partial n e t_{d}}=o_{d}\left(1-o_{d}\right) \\
\frac{\partial n e t_{d}}{\partial w_{i}}=\frac{\partial\left(\vec{w} \cdot \vec{x}_{d}\right)}{\partial w_{i}}=x_{i, d} \\
\sum \\
\frac{\partial E}{\partial w_{i}}=-\sum_{d \in D}\left(t_{d}-o_{d}\right) o_{d}\left(1-o_{d}\right) x_{i, d}
\end{gathered}
$$

Backpropagation Training Algorithm (BPN)

Initialize weights (typically random!)

- Keep doing epochs
- For each example 'e' in the training set do
- forward pass to compute
- $\mathrm{O}=$ neural-net-output (network, e)
- miss $=(\mathrm{T}-\mathrm{O})$ at each output unit
- backward pass to calculate deltas to weights
- update all weights
- end
until tuning set error stops improving

Error Backpropagation

- First calculate error of output units and use this to change the top layer of weights.

Current output: $o_{j}=0.2$
Correct output: $t_{j}=1.0$
Error $\delta_{j}=o_{j}\left(1-o_{j}\right)\left(t_{j}-o_{j}\right)$
$0.2(1-0.2)(1-0.2)=0.128$
Update weights into j
$\Delta w_{j i}=\eta \delta_{j} o_{i}$

Error Backpropagation continued...

- Next calculate error for hidden units based on errors on the output units it feeds into.

$$
\delta_{j}=o_{j}\left(1-o_{j}\right) \sum_{k} \delta_{k} w_{k j}
$$

Error Backpropagation continued...

- Finally update bottom layer of weights based on errors calculated for hidden units.

$$
\delta_{j}=o_{j}\left(1-o_{j}\right) \sum_{k} \delta_{k} w_{k j}
$$

Update weights into j

$$
\Delta w_{j i}=\eta \delta_{j} o_{i}
$$

Assignment 5: BPNs for Predicting Age of Abalones

Thank You!

[^0]: What is Sparse Connectivity and what are its' Pros and Cons? Leaving out some links.

[^1]: Unlike sigmoid or tanh which saturate in certain regions (i.e., the gradients become very close to zero), ReLU does not saturate in the positive region \rightarrow for positive inputs, the derivative of ReLU is always 1 . Hence, during backpropagation, gradients do not vanish for positive values, allowing for faster and more effective learning.

