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Supervised Vs. Un-supervised

• Supervised: Learning from labelled data
• Train data: (X, Y) for Input X, Y is the label

• (Sunny, Evening, Moderate_Temp: Play)

• Unsupervised: Learning from un-labeled data
• Train data: X

• Clustering: Its primary goal is to group similar data points together into
clusters based on their intrinsic characteristics or features.

Clustering, Dimensionality 
reduc., Anomaly detection.

Classification/ Regression.
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Clustering is Subjective: How to group?

Male Female A family School employees

Distance metrics: Euclidean distance, Manhattan distance, Cosine similarity etc.



K-Means Algorithm

• Goal: represent a data set in terms of
K clusters each of which is
summarized by a prototype

• Initialize prototypes, then iterate
between two phases:

• E-step: assign each data point to
nearest prototype

• M-step: update prototypes to be
the cluster means

• Responsibilities assign data points to
clusters: such that:

• Example 5 data points and 3 clusters:

K-Means 
Cost 
Function:

Sum of the squares of the distances of each
data point to its .

Distortion measure (Eq.1) 



Continued…

• How to determine rnk in Eq. (1) keeping      fixed ?

• As J is a linear function of rnk,

• How to determine     in Eq. (1) keeping rnk fixed ?

• As J is a quadratic function of         , it can be minimized by setting its derivative to 0:

•

• The two phases of re-assigning data points to clusters and re-
computing the cluster means are repeated in turn until there is no
further change in the assignments.



K-Means Example

—> Cluster 1: (1,2), (2,3) and (3,4)  and Cluster 2: (5,6), (7,8), (9,10)

Step 3: Compute New Centroids Centroid 1:{[(1+2+3)/3], [(2+3+4)/3]}  = (2,3)
Centroid 2:{[(5+7+9)/3], [(6+8+10)/3]} = (7,8)

Step 4: Repeat until Convergence:Reassign points,Recalculate centroids,Stop when no change.

Point Dist. to Centroid 1 Dist. to Centroid 2 Assigned Cluster

(1,2) 0 11.31 1

(2,3) 1.41 10.05 ?

(3,4) 2.83 8.49 ?

(5,6) 5.66 5.66 ?

(7,8) 8.49 2.83 ?

(9,10) 11.31 0 ?



K-Means Convergence
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Each E and M successively minimize J,
hence algorithm will converge.

Converged from here…

No change

How to choose a good value of
K: Start with K=1. Then increase
the value of K (up to a certain
upper limit). Usually, the
variance (the summation of the
square of the distance from the
“owner” center for each point)
will decrease rapidly. After a
certain point, it will decrease
slowly. When you see such a
behavior, you know you’ve
overshot the K-value. Stop it
there and that is the final value
of K.

K-Means can converge to a local minima: Solution: K-Means++ initialization 



An Application of K-Means: Segmentation

-(Problem) Hard
assignments of
data points to
clusters: small
shift of a data
point can flip it
to a different
cluster.

Solution:
Replace ‘hard’
clustering of K-
means with
‘soft’
probabilistic
assignments

(Gaussian
Mixture Model)

(Image source: Bishop’s Text)



The Gaussian Distribution

(Univariate: probability distribution of a single random
variable: Single dimension. Characterized by mean,
and variance. )

(Multi-variate: joint-probability distribution of multiple random variables. Ellipsoidal
surface in n-dimensional space. Characterized by mean vector and co-variance matrix.)

Bell-shaped

mean
covariance

Maximum likelihood



Gaussian Mixture Model (GMM)

• Clusters modeled by Gaussians and not by their Means. EM algorithm
assigns data point to a cluster with some probability.

Img. Source: https://www.analyticsvidhya.com/



Continued…

•Combine simple models into a
complex model:

Normal/ Gaussian 

Mixing coefficient: 
Relative importance of 
each component ‘k’ in the 
mixture. 

K=4
Mixture of Gaussians x

p
(x

)

(Image source: Wiki)

By increasing the number of components the curve defined by the mixture model can
take basically any shape, so it is much more flexible than just one Gaussian.

Image source: https://www.inf.u-szeged.hu/~tothl/



Contour Plots of Mixture Models
(Contours for each component) (Contours of mixture distribution)

Maximum likelihood: Summation of ‘k’ inside the log is
problematic. No closed-form maximum.
We will use EM algorithm.



EM Algorithm to solve GMM

Start with parameters describing each cluster:

Mean ‘μc’, Covariance ‘Σc’, and size ‘πc’.

E-step (Expectation):

For each datum xi: 

Compute ‘ric’, the probability that it belongs to cluster ‘c’:

1. Compute its probability under model ‘c’

2. Normalize to sum to one (over clusters ‘c’)

If xi is very likely under the cth Gaussian, it gets high weight.

Denominator just makes the sum to one.



Continued…

c

a.

c.

b.

d. … Weighted covariance

Each ‘E’ and ‘M’ step increases the log likelihood:  



Expectation-Maximization in Action! 
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Img. Source: P. Smyth’s ICML Presentation



What is Dimensionality Reduction?

X
3

(A 3D dataset lying close to a 2D subspace) (The new 2D dataset after reduction)

• Reducing the number of features/ dimensions of the dataset by preserving as much
information as possible while discarding the less important ones.

• Ex Tennis: (Service speed, Serve accuracy, Forehand effectiveness, Backhand
effectiveness, Net play success) might map to 2 Principal Components.

• Which one might contribute less to both Principal components and hence irrelevant? 
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Another Example

(2-dimensional data points) (1-dimensional that captures most variance in the data)



Curse of Dimensionality

Increasing the number of features could lead to sparse data (if number of data points remain same) leading to
dissimilar data points. This might result in overfitting as model learns noise in data. This reduces generalizability.

Image source: https://towardsdatascience.com/

• BERT uses 768-dimensional vectors
to encode the tokens of the input
sequences it processes and to
better capture complex patterns in
the data.

• As the dimension increases, the
volume of the space grows
exponentially, resulting in data
becoming increasingly sparse.

• For ex: A number line (in 1D) with
integers from 0 to 10 (10 points)
will become 10X10 = 100 points
with integer coordinates in 2D, and
with 80 dimensions, it would
become 1080 points which is
number of atoms in the Universe.

-Computational efficiency: With fewer
dimensions, algorithms can run faster
and require less memory.

-Visualization:Dimensionality reduction
techniques can help project data into
lower-dimensional spaces that can be
visualized more easily.



Principal Component Analysis (PCA)
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(Scatter plot: Data points distributed across the graph. Can you segregate them easily?)

(similar or greater amount of variance are grouped)

(varying or smaller amount of variance are grouped)



Preserving the Variance: PCA Continued…

Image source: Aurelien Geron’s text

(Projection of dataset into there  axes)Which one is 1st PC and which one is 2nd PC?



Maths behind PCA

Body Mass Index (BMI)

Height Weight
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• Scatter plot showing the trend line indicating there is a correlation between H and W. 

• Next step: Normalize or standardize the data (as H is in meters/ ft/inches W in kgs/lbs. 
This is also called “Centering the data”. 

Height Weight

2-5=-3 2-6=-4

3-5=-2 4-6=-2

6-5=1 6-6=0

6-5=1 7-6=1

8-5=3 11-6=5
-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-4 -3 -2 -1 0 1 2 3 4

C
en

te
re

d
 W

Centered H 

Centered 
data/ 
Standardize
d data tells 
us how far 
any original 
value is from 
the mean. 



Continued…

• Next, we compute the Covariance matrix based on the centered/ standardized data. 

H W

H

W

gives variance of each variable.

i

2
=(-32+(-2)2+12+12+32)/4=24/4=6

Var (W) = ((-4)2 + (-2)2 + (0)2 + (1)2 + (5)2)/4 = 46/4 = 11.5 11.5

6

• Now compute how much the two variables spread from each other i.e Cov(H, W)? 
Remember mean is already 0 for centered data. 

Cov (H, W) = (-3 X -4 + -2 X -2 + 1 X 0 + 1 X 1 + 3 X 5) / (5 - 1) = 32/4 = 8 

8

8

• Next Compute the Eigen values:  det | A – λI  |  = 0

6 8
8           11.5

–
λ 0
0       λ

= 0

(6 – λ) X (11.5 – λ) – 8 X 8 = 0

(λ2)  – 17.5 λ + 5 = 0
λ1 = 17.21

λ2 = 0.29

Eigen values



Continued…

= 0.29 = 17.21



Continued…

• Next, find out the Eigen vectors to these two values.

• A.v = λ.v 
6 8
8           11.5

x
y

. =
x
y

17.21

6X + 8Y = 17.21 X

8X + 11.5Y = 17.21 Y

8Y = 11.21 X

8X = 5.71 Y Y = 1.40 X
1
1.40

Eigen 
vector of 
Covariance 
matrix

v1

1

1.40

• Now, normalize to unit length:

Length of vector = Sqrt (12 + 1.402) = 1.72 v1 = 
1/1.72
1.40/1.72

.5814

.8139= 

Similarly get the Eigen vector of the Covariance matrix for Eigen value 2: 

v2 = 
.8139
-.5811

.5814       .8139

.8139       -.5811
Order the Eigen 
vectors



Continued…

• Now, calculate the Principal components:

-3 -4
-2 -2
1               0
1 1
3 5

. .5814       .8139
.8139       -.5811

D V

=

-4.9998 -.1173
-2.7906 -.4656
.5814 .8139
1.3953 .2328
5.8137 -.4638

Principal Components

Stores 
information 
about all 
variables 

Does not 
store much.

• Why PC2 does not store much info?

• How much % of total variance is contributed by PC1?
17.21/17.21+.29

= 98.34%



Thank You!


