
Chittaranjan Hota, Sr. Professor
Dept. of Computer Sc. and Information Systems

hota@hyderabad.bits-pilani.ac.in

BITS F464: Machine Learning (1st Sem 2024-25)
29.11.2024

Birla Institute of Technology and Science Pilani, Hyderabad Campus

Introduction to Reinforcement Learning(RL)

What is Reinforcement Learning?

Image source: https://highlandcanine.com/ Image source: UltraTech Cement Stock, 27th Nov 2024 from
www.nseindia.com

Applications: Gaming, Robotics, Autonomous vehicles, Personalized treatment
etc.

• Agent tries to maximize the cumulative reward from the
environment by performing a set of actions.

http://www.nseindia.com/

Formal Modelling: Markov Decision Process

Markov: The future state can be determined only from the present state that
encapsulates all the necessary information from the past.

What should the player ‘O’ do here to avoid a loss?

MDP Continued…

EnvironmentAgent state/obser

action

reward

St+1St
St+2

(Discounted Cumulative Reward)

: Discount factor controlling
future rewards.

Q-Learning Algorithm

• Q-learning is a model-free reinforcement learning (RL) algorithm used to
learn the optimal policy for a Markov Decision Process (MDP)

Initialize Q-Table

Select an Action

Perform Action

Measure Reward

Update Q-Table

A
ft

er
 m

u
lt

ip
le

 E
p

is
o

d
es

,
a

go
o

d
 Q

-T
ab

le
 is

 r
ea

d
y

+ [+ max]

An Example of Q-Learning
• Initializing the environment: States: {s0, s1, s2}, Actions: {a0, a1}, Rewards:

R(s0, a0) = -1, R(s0, a1) = +2, R(s1, a0) = +3, R(s1, a1) = +1, R(s2, any action) = 0
(terminal state).

• Transitions: T(s0, a0) s1, T(s0,a1) s2 (goal), T(s1,a0)  s2, T(s1, a1)s0

• Parameters: α = 0.5, γ = 0.9, Initial Q-values (Q(s, a) = 0 for all s, a).

• Episode 1:

• current state: s0, action chosen: a0 (randomly using exploration), reward: R(s0,
a0) = -1, next state: s1.

• Update Q(s0,a0) using Bellman’s equation:

• Q (s0, a0) 0 + 0.5 [-1 + 0.9 * max Q(s1, a’) – 0]

• Q(s0, a0) 0.5 * [-1 + 0] = -0.5 (Since, Q(s1, a’) = 0 initially (no knowledge of s1).

Ex. Continued…

•Episode 2: From s1

•current state: s1, action chosen: a0, reward: R(s1, a0) = +3, next state: s2.

•Update Q(s0,a0) using Bellman’s equation:

Q(s1,a0)Q(s1,a0) + α[R+ γ max Q(s2, a’) – Q(s1, a0)]

•Q (s1, a0) 0 + 0.5 [3 + 0.9 * 0 – 0] = 1.5

•Episode 3: Back to s0(different action)
•current state: s0, action chosen: a1, reward: R(s0, a1) = +2, next state: s2.

•Update Q(s0,a1) using Bellman’s equation:

•Q(s0,a1)Q(s0,a1) + α[R+ γ max Q(s2, a’) – Q(s0, a1)]

•Q (s0, a1) 0 + 0.5 [2 + 0.9 * 0 – 0] = 1.0

State Action(a0) Action(a1)

s0 -0.5 1.0

s1 1.5 0.0

s2 0.0 0.0

Updated Q-values after 3 Episodes

a’

a’

• Alternatively, you may use an ANN to learn Q-values: Deep Q-Learning (DQN)

Optimal Solution using Q-Learning: Maze

Maze parameters

maze = [

[0, 1, 0, 0, 0],

[0, 1, 0, 1, 0],

[0, 0, 0, 1, 0],

[0, 1, 0, 0, 0],

[0, 0, 0, 1, 2]

#'2'is the diamond

(goal state)

]

import numpy as np

import

matplotlib.pyplot

as plt

maze = np.array(maze)

Python Code

Continued…

…

Deep Q-Learning (DQN) for RL
• When the number of states and actions become very large, how do you

scale?

• Solution: Combine Q-Learning and Deep Learning Deep Q-Networks (DQN)

• Goal: Approximate a function: Q(s,a; θ), where θ represents the

trainable weights of the network

• Q(s,a) = r(s,a) + γ max Q(s’,a) Bellman’s equation

• Cost = {Q(s,a; θ) – [r(s,a)+γ max Q(s’,a; θ)]}2

s

a

Q

ANN
Q(a1)

Q(a2)

Q(a3)
(In-efficient as we need more
iterations) (Improved)

⇔

⇒

Good luck for Comprehensive Exams!

Thank You!

