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Motivation: Why generative models?

Performance
?

train

test

Is it realistic? 

Hence, it is essential to handle test data the same way the train
data was handled.

Performance
?

(Mean, median, mode)

Classifier (e.g. 
Logistic 

Regression)



• Story: Assume that Rajesh scores ‘A’ grade in ML by
comparing what he studied in other related courses where
as Amit scores same ‘A’ grade in ML course by learning every
detail of the algorithms taught (with several examples) in
ML.

• Two different approaches only. Which one is what?

• Computationally: Cheaper vs expensive

• Outliers: More robust vs Less

Discriminative Vs Generative Models

Use cases: classification,
supervised learning tasks vs
denoising, density estimation,
un-supervised learning tasks



Discriminative Vs Generative Models

• Both may be used for classification tasks

• Learn the decision boundary
from samples.

• Learn the underlying probability
distribution of data from samples.

• Estimates a function f: x -> y,
by maximizing the conditional
probability P(y|x)

• Assume some functional form
for the probability such as
P(y|x) and with training data
estimate the parameters of
P(y|x) i.e ‘w’ and bias

• Ex: Logistic regression, RF

• Estimate the prior probability P(y)
and the likelihood probability
P(x|y) from the samples. Use Bayes
rule to compute P(y|x)

• Estimates a function f: x -> y by
maximizing joint probability of
P(x,y)

• Ex: Bayesian Networks, Naïve
Bayes, HMM, GANs, …

Conditional probability of the target y,
given an observation x.

Conditional probability of the observable x,
given a target y.



Continued…

Which one can generate new data samples that are similar to
the training data?

https://this-person-does-not-exist.com/ Nvidia/StyleGAN

Que: If you have small no. of labeled data, which model should you prefer?



Bayesian Learning: Generative Approach

• Bayesian learning uses probability to model data and quantify
uncertainty of predictions.

• Each observed training data can incrementally decrease or
increase the estimated probability of a hypothesis rather
than completely eliminating a hypothesis if it is found to be
inconsistent with a single example.

• Prior knowledge can be combined with observed data to
determine the final probability of a hypothesis.

• Moreover new instances can be classified by combining
predictions of multiple hypotheses.



Two Roles for Bayesian Methods

• Provides practical learning algorithms

• Bayesian belief networks/ Bayesian networks learning

• Naive Bayes learning

• Combines prior knowledge (prior probabilities) with
observed data

• Provides useful conceptual framework

• Acts as a benchmark for evaluating other learning
algorithms

• Practical difficulty: Initial knowledge of many probabilities,
Significant computational cost.



Baye’s Theorem

Thomas Bayes (1701-1761)

PriorLikelihood

Posterior
Marginal

• Likelihood: represents the probability of observing ‘D’ given the
hypothesis or model parameters.

• Marginal: represents the overall probability of observing the data or
evidence, irrespective of any specific hypotheses.
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 P(D|h ) P(h )

n

k=1
k k.

Complete 
Blood 
Count

Intuition: 
when will 
P(h|D) 

increase?



Maximum A Posteriori (MAP)
• How does the learner choose the most probable hypothesis (h) out of

many candidate hypotheses (H) given the observed data (D)?

• Any such maximally probable hypothesis is called maximum a posteriori
(MAP) hypothesis. hMAP

• hMAP = argmax P(h|D)
h∈H

= argmax P(D|h). P(h)/ P(D)

h∈H

= argmax P(D|h). P(h)

h∈H

Que: Why P(D) is dropped in
the final equation?

What is argmax?
The argmax (arg max) function
returns the argument or arguments
(arg) for the target function that
returns the maximum (max) value
from the target function.

Example: Let g(x) = x2 and x: 1 to 3

g(1) = 1 g(2) = 4 and g(3) = 9

 argmax g(x) = 3

In ML: Say, a 3-class classification problem with red = 0, blue = 1, green = 2. Assume that the
model predicts, pred= [0.2,0.1,0.7] as the probabilities of different classes. argmax(pred) = ?

Eq:1



Maximum Likelihood Estimation

• MLE aims to find the parameter values that make the observed data
most probable.

• In some cases, we will assume that every hypothesis in H is equally
probable a priori (P(hi ) = P(hj) for all hi and hj in H). Then Eq:1 becomes:

• In other words, MLE treats P(h)/P(D) as a constant and does not allow
us to inject our prior beliefs, P(h), about the likely values of h.

MLE = argmax P(D|hi).
hi∈H

• An example: Let's say we flip the coin 10 times and observe 7 heads.
Using MLE, we estimate the probability of getting heads as 7/10 or 0.7
because this value maximizes the likelihood of observing 7 heads in 10
flips.

Informally: if the parameters are correct then they will give larger probabilities for the
observations, compared to wrong parameters.

The likelihood tells us how likely one
sample is relative to another.



Continued…
• Let's say we have a coin, and we want to estimate the probability of

getting heads (H) when flipping it.

• Our prior belief about this probability might be represented by a Beta
distribution, which is a common choice for modeling probabilities. Let
Beta(α, β), with α=1, β=1, i.e uniform prior distribution (no bias
towards getting heads)

• Now, let's say we flip the coin 10 times and
get 7 heads (H) and 3 tails (T). To estimate the
probability of getting heads using MLE in a
Bayesian context, we update our prior belief
with the observed data using Bayes' theorem:

• Since our prior is uniform (Beta(1, 1)), P(heads)=0.5 and P(tails)=0.5.
• Using binomial distribution: P(data∣heads) =



In log-likelihood

i

i i

MLE = argmax P(D|h)
h∈H 𝜽

The maximum likelihood estimation (MLE) maximizes the log-likelihood.

For Linear Regression: Maximizing ML estimate is equivalent to minimizing
least-square error. (seen before)



An Example 

CBC Test

• P(cancer)=0.008, P(~cancer)=0.992, P(Pos|cancer)=0.98, P(Neg|cancer) =
0.02, P(Pos|~cancer) = 0.03, P(Neg|~cancer) = 0.97

• Does patient have cancer or not?

• When patient takes a lab test, the possible
results could be Positive (Pos) or Negative
(Neg).

• Suppose we now observe a new patient for whom the lab test returns a
“Pos” result. Should we diagnose the patient as having cancer or not?

P(cancer|Pos) 
=P(Pos|cancer).P(cancer)/{P(Pos|cancer).P(cancer)+P(Pos|~cancer).
P(~cancer)} = 0.98X0.008/(0.98X0.008 + 0.03X0.992) = 0.21 

 hMAC =  ~cancer 

Imp: while the posterior probability of cancer is significantly higher than its prior
probability, the most probable hypothesis is still that the patient does not have cancer.



Bayesian Networks: An Example
• Suppose you are trying to determine if a

patient has inhalational anthrax. You
observe the following symptoms:

• The patient has a cough

• The patient has a fever

• The patient has difficulty breathing

• Are we not dealing with uncertainty?
x-ray report confirms that the patient has a
wide mediastinum.

Anthrax

Cou
gh Fev

er

Bre
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Me
dias
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m

• Most significant contribution in past decades

Spam filtering, robotics, diagnostic systems,

detecting credit card fraud etc.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their
conditional dependencies via a directed acyclic graph.



Conditional Independence

•Topology of the network encodes conditional independence
assertions:

•Weather is independent of the other variables

•Toothache and Catch are conditionally independent given
Cavity

Bayesian Networks are also called as Bayesian Belief Networks.



An example with probabilities

[Source: Norsys presentation]



Most of them have 
been referred by 
their family 
physicians, and so 
the incidences of 
lung disease 
amongst that 
population is much 
higher, you would 
imagine.

• 30% of the US population smokes.

• Lung cancer can be found in about 70 people per 100,000.

• TB occurs in about 10 people per 100,000.

• Bronchitis can be found in about 800 people per 100,000.

• Dyspnea can be found in about 10% of people, but most of that is due to
asthma and causes other than TB, lung cancer, or bronchitis.



50% of your patients smoke. 1% have TB. 5.5% have lung cancer. 

45% have some form of mild or chronic bronchitis. 

Continued…

0



New patient with short of breath

• bronchitis is far more common than cancer or TB

• Some of our beliefs are increased substantially, others hardly at all. 
• And the beauty of it is that the amounts are precisely quantified. 



If she has been to Asia recently?

Explaining away: lung cancer, bronchitis, smoking



If patient is indeed a smoker?

order a diagnostic X-Ray

Order more tests like blood test, long
tissue biopsies,…



Bayesian Networks: Burglary-Alarm Ex.

Joint probability distribution: 

P(J, ~M, A, ~B, ~E)
= 
P(J|A).P(~M|A).P(A|~B,~E).
P(~B).P(~E)

= .9 X .3 X .001 X .999 X .998

= 0.00027

Each variable is conditionally independent of all its non-descendants in the graph given
the value of all its parents.

Find out P(J, M, A, ~B, ~E)?  0.00063
P(J,~M, A, B, ~E) = 
P(J|A).P(~M|A).P(A|B,~E).P(B).P(~E) = .00025 

P(X1, X2, …) =       P(Xi | pa(Xi)) 



Independence relations in BBN

(direct connections)

• If X and Y are connected by an edge, then X and Y are
dependent

• Burglary and Alarm are what?

• Knowing B has taken place, increases the belief that the A
has gone off. (Vice versa)

EB

A

J M



Serial Connections: BBN

• If A is not observed, then how are B and M related?

• Knowing that B has taken
place, will you not believe more
on M. (vice versa)

• If A is observed, then how are B and M related?

• If you know that A went off, will further knowing that B has
taken place increase the belief on M? (vice versa)

EB

A

J M

P(J|A, B) = ? P(J|A)

P(J, B|A) = ? P(J|A) P(B|A)



Converging Connections: BBN

• If A is observed, then B and E are conditionally dependent.

• Knowing that A has taken
place, will you believe less
or more on E. (vice versa)

• If M is observed, then also B and E are conditionally related.

• If A, J, and M are not observed, B and E are marginally
independent.

EB

A

J M
P(B,E) = ? P(B)XP(E)



Diverging Connections: BBN

• If A is not observed, then how are say, J and M related?

• Knowing that J has taken
place, will you not believe more
on M. (vice versa)

• If A is observed, then how are J and M related?

• If you know that A went off, will further knowing that J has
called increase the belief on M? (vice versa)

EB

A

J M

P(J|A,M) = ? P(J|A)

P(J, M|A) = ? P(J|A)P(M|A)



D-separation in Bayesian Belief Networks

• Conditional independence relations amongst different variables are
defined in terms of graphical criteria, called d-separation.

• X is d-separated from Y given Z if every un-directed path between them
is blocked by Z.

X Z Y
(Linear 
sub-
structure)

X

Z

Y
(wedge 
sub-
structure)

X

Z

Y(vee-
structure)



D-separation in Bayesian Belief Networks

1. Draw the “ancestral graph” (reduced version of original network
consisting of parent, parent’s parent, …).

2. “Moralize” the ancestral graph by “marrying” the parents.

3. "Disorient" the graph by replacing the directed edges (arrows) with
undirected edges (lines).

4. Delete the givens and their edges.

If the variables are disconnected in this graph, they are guaranteed to be
independent

If the variables are connected in this graph, they are not guaranteed to be
independent.

If one or both of the variables are missing (because they were givens, and
were therefore deleted), they are independent.



An example

Question: Are B and E conditionally independent, given J and
F?

EB

A

J M

F

K

Ancestral graph Moralize Disorient

Delete givens

As B and E are connected they are not conditionally independent given J and F.

Are B and E marginally independent? P(B|E) = P(B), P(E|B)=P(E)

B E B E B E B E

no parents no edges no givens
Yes

ancestral



Bayes Network Construction

• Choose a set of variables describing the application
domain

• Choose an ordering of variables

• Start with empty network and add variables to the
network one by one according to the ordering

• To add i-th variable Xi:

• Determine pa(Xi) of variables already in the network 
(X1, …, Xi – 1) such that:
P(Xi | X1, …, Xi – 1) = P(Xi | pa(Xi))
(domain knowledge is needed here)

• Draw an arc from each variable in pa(Xi) to Xi

A

B E

J M

A

B E

JM

Order: B, E, A, J, M
pa(B)=pa(E)={}, pa(A)={B,E}, 
pa(J)={A}, pa{M}={A}

Order: M, J, A, B, E
pa{M}={}, pa{J}={M}, pa{A}={M,J}, pa{B}={A}, pa{E}={A,B}



TensorFlow (Bayesian Network)



Minimizing the negative log 
probability

Other methods: Markov Chain Monte Carlo



Maximum A Posteriori = argmax P(D|h). P(h)
h∈H

Bayes to Naïve Bayes: Why?

How to choose a hypothesis?
(Recap)

• Given training data, we can learn/estimate P(D|h) and P(h). Estimating

P(h) is easy as we need to count the number of times ‘h’ appears in the

training data.

• Naive Bayes classifiers make the "naive" assumption that the features
are conditionally independent given the class label. Mathematically, this
can be expressed as:

P(D∣h)=P(x1∣h)×P(x2∣h)× … × P(xn∣h) =

Maximum A Posteriori = argmax P(h)
h∈H

i

i

Feature values are Independent given the target value: Strong assumption and
unrealistic for real data. It is Naïve because it is (almost) never true.

• However, finding P(D|h) i.e the Likelihood function becomes too complex in

real-world data with high dimensions because of large dependencies.



Example Naïve Bayes: Play Tennis

(Learning)

Outlook Play=Yes Play=No

Sunny 2/9 3/5

Overcast 4/9 0/5

Rain 3/9 2/5

Humidity Play=Yes Play=No

High 3/9 4/5

Normal 6/9 1/5

Temperature Play=Yes Play=No

Hot 2/9 2/5

Mild 4/9 2/5

Cool 3/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5

Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

Given: x’= (Outlook=Sunny, temperature=Cool, Humidity=High, Wind=Strong)

(Testing)

P(Yes|x’): [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)] P(Play=Yes) = 0.0053

P(No|x’): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)] P(Play=No) = 0.0206

No
Play



Example Naïve Bayes: Play Tennis

(Learning)

Outlook Play=Yes Play=No

Sunny 2/9 3/5

Overcast 4/9 0/5

Rain 3/9 2/5

Humidity Play=Yes Play=No

High 3/9 4/5

Normal 6/9 1/5

Temperature Play=Yes Play=No

Hot 2/9 2/5

Mild 4/9 2/5

Cool 3/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5

Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

Given: x’= (Outlook=Sunny, temperature=Cool, Humidity=High, Wind=Strong)

(Testing)

P(Yes|x’): [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)] P(Play=Yes) = 0.0053

P(No|x’): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)] P(Play=No) = 0.0206

No
Play



Types of Naïve Bayes
• There are different types of Naive Bayes classifiers because of variations in

the probability distribution assumptions made about the data.

• Gaussian Naïve Bayes: Assumes that features follow a normal (Gaussian)
distribution. This is suitable for continuous data.

• Ex: Predicting diabetes using age, glucose level, etc.

• Multinomial Naïve Bayes: Features represent different frequencies of

events. Used for text classification tasks.

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()

• Example: classifying news articles into categories or determining if a
message is spam.

from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB()

• Bernoulli Naïve Bayes: Document classification with binary features. BernoulliNB()

• Complement Naive Bayes: Multinomial for Imbalanced datasets. ComplementNB()

• Categorical Naive Bayes: Customer behaviour (Ex). CategoricalNB()



Spam Classification Using Multinomial Naive Bayes

CountVectorizer: “The cat sat on the mat”[2, 1, 1, 1, 1, 0] “The dog sat on the mat” [2, 0, 1, 1, 1, 1]



Examples using GaussianNB(): Assignment 4 
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Thank You!


