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Motivation: Why generative models?
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Hence, it is essential to handle test data the same way the train
data was handled.



Discriminative Vs Generative Models

Story: Assume that Rajesh scores ‘A’ grade in ML by
comparing what he studied in other related courses where
as Amit scores same ‘A’ grade in ML course by learning every
detail of the algorithms taught (with several examples) in
ML.

Two different approaches only. Which one is what?

Computationally: Cheaper vs expensive

23
Outliers: More robust vs Less é’i"
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Discriminative Vs Generative Models

* Both may be used for classification tasks

* Learn the decision boundary J .« |earn the underlying probability

from samples. distribution of data from samples.

e Estimates a function f: x ->y, || = Estimates a function f: x -> y by
by maximizing the conditional maximizing joint probability of
probability P(y|x) P(x,y)

 Assume some functional form || ¢ Estimate the prior probability P(y)
for the probability such as and the likelihood probability
P(y|x) and with training data P(x]y) from the samples. Use Bayes
estimate the parameters of rule to compute P(y|x)

P(y|x) i.e ‘W’ and bias
e Ex: Bayesian Networks, Naive

* Ex: Logistic regression, RF Bayes, HMM, GANs, ...

Conditional probability of the target vy, Conditional probability of the observable x,
given an observation x. given a targety.



Continued...

Which one can generate new data samples that are similar to
the training data?
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Que: If you have small no. of labeled data, which model should you prefer?



Bayesian Learning: Generative Approach

e Bayesian learning uses probability to model data and quantify
uncertainty of predictions.

 Each observed training data can incrementally decrease or
increase the estimated probability of a hypothesis rather
than completely eliminating a hypothesis if it is found to be
inconsistent with a single example.

* Prior knowledge can be combined with observed data to
determine the final probability of a hypothesis.

* Moreover new instances can be classified by combining
predictions of multiple hypotheses.




Two Roles for Bayesian Methods

* Provides practical learning algorithms
e Bayesian belief networks/ Bayesian networks learning
* Naive Bayes learning

e Combines prior knowledge (prior probabilities) with
observed data

* Provides useful conceptual framework

e Acts as a benchmark for evaluating other learning
algorithms

* Practical difficulty: Initial knowledge of many probabilities,
Significant computational cost.




Baye’s Theorem
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Marginal

Likelihood: represents the probability of observing ‘D’ given the
hypothesis or model parameters.

Marginal: represents the overall probability of observing the data or
evidence, irrespective of any specific hypotheses.
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Maximum A Posteriori (MAP)

* How does the learner choose the most probable hypothesis (h) out of
many candidate hypotheses (H) given the observed data (D)?

* Any such maximally probable hypothesis is called maximum a posteriori
(MAP) hypothesis. 3 hypp

' ?
hyap = argmax P(h|D) What is argmax: |
heH The argmax (arg max) function

returns the argument or arguments
= argmax P(D|h). P(h)/ P(D) (arg) for the target function that
heH returns the maximum (max) value
[ = argmax P(D|h). P(hﬂ from the target function.
Eq:1

heH Example: Let g(x) =x? and x: 1 to 3

Que: Why P(D) is dropped in || 8(1)=1 g(2)=4 and g(3)=9
the final equation? > argmax g(x) = 3

In ML: Say, a 3-class classification problem with red = 0, blue = 1, green = 2. Assume that the

model predicts, pred=[0.2,0.1,0.7] as the probabilities of different classes. = argmax(pred) = ?



Maximum Likelihood Estimation

e MLE aims to find the parameter values that make the observed data
most probable.

* In some cases, we will assume that every hypothesis in H is equally
probable a priori (P(h;) = P(h)) for all h;and h;in H). Then Eq:1 becomes:

MLE = argmax P(D| h,). [The likelihood tells us how likely oneJ
h,€H sample is relative to another.

* In other words, MLE treats P(h)/P(D) as a constant and does not allow
us to inject our prior beliefs, P(h), about the likely values of h.

* An example: Let's say we flip the coin 10 times and observe 7 heads.
Using MLE, we estimate the probability of getting heads as 7/10 or 0.7
because this value maximizes the likelihood of observing 7 heads in 10
flips.

Informally: if the parameters are correct then they will give larger probabilities for the

observations, compared to wrong parameters.



Continued...

* Let's say we have a coin, and we want to estimate the probability of
getting heads (H) when flipping it.

e  Qur prior belief about this probability might be represented by a Beta
distribution, which is a common choice for modeling probabilities. Let
Beta(a, B), with a=1, B=1, i.e uniform prior distribution (no bias
towards getting heads)

* Now, let's say we flip the coin 10 times and
get 7 heads (H) and 3 tails (T). To estimate the
probability of getting heads using MLE in a
Bayesian context, we update our prior belief
with the observed data using Bayes' theorem:

' P(datalheads) x P(heads
P(heads|data) = %

* Since our prior is uniform (Beta(1, 1)), P(heads)=0.5 and P(tails)=0.5.
* Using binomial distribution: P(datalheads) =




In log-likelihood

* We want to estimate P(x = Head) = 1 - P(x = Tail) and hence the

hypothesis space can be parameterized by a single variable @ such
that P(x=H) =0, i.e, P(D|h) =P(D|8).

* Assuming independence between events, we can write:

* Using log of the likelihood function because of notational convenience
and also since the product of probabilities can be very small:

* log P(Dlh) =log [}, P(x;|0) =X, log P(x;|6)

Hence, MLE = argmax P(D|h) = argmax Xi.,logP(x;|0)
heH 6

Y The maximum likelihood estimation (MLE) maximizes the log-likelihood.

For Linear Regression: Maximizing ML estimate is equivalent to minimizing
least-square error. (seen before)



An Example

CBC Test

* Does patient have cancer or not?

e When patient takes a lab test, the possible
results could be Positive (Pos) or Negative

(Neg). \ |
e P(cancer)=0.008, P(~cancer)=0.992, P(Pos|cancer)=0.98, P(Neg|cancer) =
0.02, P(Pos|~cancer) = 0.03, P(Neg|~cancer) = 0.97

* Suppose we now observe a new patient for whom the lab test returns a
“Pos” result. Should we diagnose the patient as having cancer or not?

P(cancer|Pos)
=P(Pos|cancer).P(cancer)/{P(Pos|cancer).P(cancer)+P(Pos|~cancer).
P(~cancer)} =0.98X0.008/(0.98X0.008 + 0.03X0.992) =0.21

=2 hyac = ~cancer

Imp: while the posterior probability of cancer is significantly higher than its prior
probability, the most probable hypothesis is still that the patient does not have cancer.




Bayesian Networks: An Example

 Suppose you are trying to determine if a
patient has inhalational anthrax. You
observe the following symptoms:

e The patient has a cough

e The patient has a fever

e The patient has difficulty breathing
Are we not dealing with uncertainty?

Anthrax x-ray report confirms that the patient has a
wide mediastinum.

Most significant contribution in past decades

Spam filtering, robotics, diagnostic systems,

detecting credit card fraud etc.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their
conditional dependencies via a directed acyclic graph.



Conditional Independence

*Topology of the network encodes conditional independence
assertions:

& e Marginal independence:

P(A,B,C)=P(A)P(B)P(C
e Independent causes ( ) (APB)PC) e Conditionally independent effects

P(A,B,C) = P(A|B,C)P(B)P(C) P(A, B,C) = P(B|A)P(C|A)P(A)
*Weather is independent of the other variables

*Toothache and Catch are conditionally independent given
Cavity

Bayesian Networks are also called as Bayesian Belief Networks.



An example with probabilities

( Visit To Asia ) As1a ( Smoking )
= 7 N
L N
// \\
II’ \\\
. > R " ‘ “y-
( Tuberculosis ) ( Lung Cancer ) (" Bronchitis )
P& //"r
-\\ ,//” // 4
\\ 4 /s
. ‘,'/ ///
Tuberculosis pa
or Cancer y
/ ~
. o \ S/
‘-// . //
( XRay Result ) ( Dyspnea )

[Source: Norsys presentation]



30% of the US population smokes.

Lung cancer can be found in about 70 people per 100,000.
TB occurs in about 10 people per 100,000.

Bronchitis can be found in about 800 people per 100,000.

Dyspnea can be found in about 10% of people, but most of that is due to
asthma and causes other than TB, lung cancer, or bronchitis.
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Continued...

50% of your patients smoke. 1% have TB. 5.5% have lung cancer.
45% have some form of mild or chronic bronchitis.
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New patient with short of breath
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* bronchitis is far more common than cancer or TB

* Some of our beliefs are increased substantially, others hardly at all.
* And the beauty of it is that the amounts are precisely quantified.




If she has been to Asia recently?
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Explaining away: lung cancer, bronchitis, smoking




If patient is indeed a smoker?
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order a diagnostic X-Ray
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Order more tests like blood test, long
tissue biopsies,...




Bayesian Networks: Burglary-Alarm Ex.

/ \ Joint probability distribution:
P(B) P(E)

002 P(Xll XZI ) = .-11_,.1,; P(X| | pa(xl))
>~ [PAIBE P(J, ~M, A, ~B, ~E
T T 95 ( 7 7 4 ? )
T F 94 =
FoT2 P(J|A).P(*M|A).P(A|~B,~E).

P(~B).P(~E)
P(JIA) A [P(M]A)
T| 90 TT 70 1| =.9X.3X.001X.999 X .998
F .05 F | 01

k / = 0.00027

. P(JINMI AI B) ~E) =
Find out P(J, M, A, ~B, “E)? - 0.00063 P(J|A).P(*M|A).P(A|B,~E).P(B).P(~E) = .00025

Each variable is conditionally independent of all its non-descendants in the graph given

the value of all its parents.




Independence relations in BBN

 If X and Y are connected by an edge, then X and Y are
dependent

e Burglary and Alarm are what? q ﬁ

(direct connections)

O

 Knowing B has taken place, increases the belief that the A
has gone off. (Vice versa)




Serial Connections: BBN

If Ais not observed, then how are B and M related?

Knowing that B has taken
place, will you not believe more
on M. (vice versa)

e\p PUJ|A,B)=? PQJ|A) ‘R
P(J,B|A)=? P(IA) P(BIA) o
. |

If A'is observed, then how are B and M related?

* If you know that A went off, will further knowing that B has
taken place increase the belief on M? (vice versa)




Converging Connections: BBN

* Knowing that A has taken
place, will you believe less
or more on E. (vice versa)

 If Ais observed, then B and E are conditionally dependent.
°\‘/e P(BE)=? PEXPE) '/R o

* If Mis observed, then also B and E are conditionally related.

 If A, J, and M are not observed, B and E are marginally
independent.




Diverging Connections: BBN

 Knowing that J has taken
place, will you not believe more

* If Ais not observed, then how are say, ] and M related?
on M. (vice versa)
/o\ PU|AM) =? PJIA)

" b P(J, M|A) = ? PQIA) P(MIA) G/R o

 |f Ais observed, then how are J and M related?

* If you know that A went off, will further knowing that J has
called increase the belief on M? (vice versa)




D-separation in Bayesian Belief Networks

* Conditional independence relations amongst different variables are
defined in terms of graphical criteria, called d-separation.

* Xis d-separated from Y given Z if every un-directed path between them
is blocked by Z.

(Linear
sub-
structure)

(wedge
sub-
structure)

(vee-
structure)




D-separation in Bayesian Belief Networks

1. Draw the “ancestral graph” (reduced version of original network
consisting of parent, parent’s parent, ...).

2. “Moralize” the ancestral graph by “marrying” the parents.

3. "Disorient” the graph by replacing the directed edges (arrows) with
undirected edges (lines).

4. Delete the givens and their edges.

If the variables are disconnected in this graph, they are guaranteed to be
independent

If the variables are connected in this graph, they are not guaranteed to be
independent.

If one or both of the variables are missing (because they were givens, and
were therefore deleted), they are independent.




An example

Are B and E marginally mdependent? P(B ! E) = P(B), P(E|B) P(E)

ancestral no parents no edges no glvens

Questlon. Are B and E conditionally independent, given J and
F?

Ancestral graph Moralize Disorient

Q 9« ,0
‘\0

o e
N o o e e e e e e e

As B and E are connected they are not conditionally independent given J and F.



Bayes Network Construction

Choose a set of variables describing the application

domain

Choose an ordering of variables

Start with empty network and add variables to the
network one by one according to the ordering

To add i-th variable X::

Determine pa(X;) of variables already in the network
(Xy, .-, Xi_4) such that:

P(X, | X, ..., Xi_1) = P(X. | pa(X)))

(domain knowledge is needed here)

Draw an arc from each variable in pa(X;) to X;

Order: M, J, A, B, E

pa{M}={}, pa{l}={M}, pa{A}={M,J}, pa{B}={A}, pa{E}={A,B} ——

’—————————————\
i ——— -

Order: B, E, A, J, M
pa(B)=pa(E)={}, pa(A)={B,E},
pa(J)={A}, pa{M}={A}

———————————————————

————————————————————




TensorFlow (Bayesian Network)

tensorflow_probability tfp
tensorflow tf

bayesian_ﬁetwork{}:

dtype=tf.int32, name="A") # 4 is5 1 wi

A . {probs .

{probs=tf. (A ), dtype=tf.int32, name="E")

{probs=tf. (A , tf. (B ), }, dtype=tf.int32, name="C")

. {bayesian_network)

samples -juint_distl

{"Sawples of A, B,
(samples)




b
A
B
C

tensorflow_probability tfp

tensorflow tf

> the Bavesian

ye51an netwﬂrk{}
tfd.
tfd.
tfd.

——
Ly L4 L L

(probs

(probs=tf.
(prnbs L

{ini tlal value

{initial value

log prob Fn(}
joint dist.

e i
L ' La =

grads - tape.

-

optimizer.

step

(t"5tep {step}:

, dtype
(A
(A

e

Other methods: Markov Chain Monte Carlo

++ (T eu s _',.._.

tf.int32, name="A") # Pric oA

H o ,..._._.'

. . ), dtype=tf. 1nt32 name="B") # B ¢ - on
. tf. (B . » ), }, dtype=tf.int32, name="C")

. . "
— Tt —f = e =

dfype tf.int32)
dtype-tf.int32)

AL LAFOYENL

(a=A, b

(

B, c-observed C)

1--‘-.‘ probability Minimizing the negative log
earning_ rate probability

s, T FI

A={A.

()}, B={B. ()}, log prob={-neg log prob. {()}7)




Bayes to Naive Bayes: Why?

(Recap)
How to choose a hypothesis?  Maximum A Posteriori = argmax P(D|h). P(h)—

heH

« Given training data, we can learn/estimate P(D|h) and P(h). Estimating
P(h) is easy as we need to count the number of times ‘h’ appears in the
training data.

« However, finding P(D|h) i.e the Likelihood function becomes too complex in
real-world data with high dimensions because of large dependencies.

* Naive Bayes classifiers make the "naive" assumption that the features
are conditionally independent given the class label. Mathematically, this
can be expressed as:

P(DIRY=P(x,|N)XP(x,Ih)% .. % P(x |h) = l_[P(x|h)

Maximum A Posteriori = argmax P(h) 1_[ P(x;|h)
heH )

Feature values are Independent given the target value: Strong assumption and

unrealistic for real data. It is Naive because it is (almost) never true.



Example Naive Bayes: Play Tennis

P(Play=Yes) =

Temperature Play=Yes Play=No Outlook | Play=Yes | Play=No
sy | @ | @
Hot 2/9 2/5 @
Overcast 4/9 0/5
Mild 4/9 2/5 / /
Wind Play=Yes Play=No Humidity | Play=Yes | Play=No
Stron ‘ 3/5
& (319 / High 3/9 4/5
Weak 6/9 2/5 Normal 6/9 1/5
P(Play=No) = (Learning) (Testing)

Given: x’= (Outlook=Sunny, temperature=Cool, Humidity=High, Wind=Strong)

P(Yes|x’): [P(Sunny|Yes)P(Cool|Yes)P(High | Yes)P(Strong|Yes)] P(Play=Yes) = 0.0053 No

P(No|x’): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)] P(Play=No) = 0.0206 Play




Example Naive Bayes: Play Tennis

P(Play=Yes) =

Temperature Play=Yes Play=No Outlook | Play=Yes | Play=No
sy | @ | @
Hot 2/9 2/5 @
Overcast 4/9 0/5
Mild 4/9 2/5 / /
Wind Play=Yes Play=No Humidity | Play=Yes | Play=No
Stron ‘ 3/5
& (319 / High 3/9 4/5
Weak 6/9 2/5 Normal 6/9 1/5
P(Play=No) = (Learning) (Testing)

Given: x’= (Outlook=Sunny, temperature=Cool, Humidity=High, Wind=Strong)

P(Yes|x’): [P(Sunny|Yes)P(Cool|Yes)P(High | Yes)P(Strong|Yes)] P(Play=Yes) = 0.0053 No

P(No|x’): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)] P(Play=No) = 0.0206 Play




Types of Naive Bayes

There are different types of Naive Bayes classifiers because of variations in
the probability distribution assumptions made about the data.

Gaussian Naive Bayes: Assumes that features follow a normal (Gaussian)
distribution. This is suitable for continuous data.
Ex: Predicting diabetes using age, glucose level, etc

1 _ =g
from sklearn.naive_bayes import|GaussianNB P(z|C) = —=e %7

/et
model = GaussianNB() Vama

Multinomial Naive Bayes: Features represent different frequencies of
events. Used for text classification tasks.

n! ﬁPh:- o) from sklearn.naive_bayes import|MultinomialNB
I 2|

zlzploa! 250 0 model = MultinomialNB()

P(z|C) =

Example: classifying news articles into categories or determining if a
message is spam.

Bernoulli Naive Bayes: Document classification with binary features. |BernoulliNB()

Complement Naive Bayes: Multinomial for Imbalanced datasets.| ComplementNB()

Categorical Naive Bayes: Customer behaviour (Ex). CategoricalNB()



Spam Classification Using Multinomial Naive Bayes

import pandas as pd

from sklearn.feature # Adjust the test size to ensure enough data for training

from sklearn.model_sq
from sklearn.naive b
from sklearn.metrics

# Sample dataset (ex
data = pd.DataFrame(-
‘message’: ["Fre:
"label’: [ 'spam’
# Map labels to 1 (s

data[ 'label’'] = data

# Initialize CountVe
vectorizer = CountVe

# Transform the text
X = vectordizer.fit_t

# Target variable
y = data['label’]

# 5Split the data into train and test sets

X_train, X _test, y_train, y_test = train_test split(X, y, test_size=0.4,

# Initialize the Multinomial Maive Bayes classifier
nb = MultinomialNB()]

# Fit the model on the training data
nb.fit(X_train, y_train)

# Predict labels for the test set
y_pred = nb.predict(X_test)

# Evaluate the model

accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 1806:.2f}%")
# Detailed classification report

print(classification_report(y_test, y _pred))

Accuracy: 58@.88%

random_state=42)

CountVectorizer: “The cat sat on the mat”—>[2,1,1, 1, 1, 0] “The dog sat on the mat” [2,0, 1,1, 1, 1]



Examples using GaussianNB(): Assignment 4

140 1

S

j

Lab-Testl1l(30) Lab-Test2(24) Midsem Test (90) Gender Attendance Grade 120 -

13.00 24 66.0 Male High A

100 A
15.00 24 67.0 Female High

5.25 45.0 1 High

[+]
(=]
L

(=
o
L

A
B-
2.75 34.0 Male High C-
C-

7.25 30.0 Male High

nb classifier =|GaussianNB()

nb classifier.fit(X train, y train)
y _pred = nb classifier.predict(X test)

N
o
n

o
b

A A- B B- C G D E

Diabetes Type Classification

HTML + JavaScript / React.

precision recall fl-score support

b
=)
[}

.00 1.00 2

.00 1.00 4

Blood Sugar Level
.89 0.92 18

.92 0.75 36

.37 0.50 9
.91 0.93 22

Front end

Insulin Level

.86 0.80

i - T B R FYR 5 B
oo oo o

.00 1.00

wab develapmans,

2 drog at 1 time

accuracy

macro avg . 0.86

 Flask

weighted avg 5 0.82

Age, blood sugar level, insulin level, and BMI

BMI




Thank You!




