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Linear Discriminant Functions: Applications

* Fisher’s Linear Discriminant Analysis for reducing the number of features
required for Face Recognition.

* Classifying patient’s disease state as Mild, Moderate or Severe.

* Identifying the type of customers who might buy a particular product.



Linear Discriminant Functi

ons

e Used to discriminate between two or more classes based on

a set of predictor variables.

X = [Xq,. Xn]T ... .
X, %ol Discriminant Function

* Learns the mapping between feature vector and class labels.

* Does it not create a decision boundary? | <

Hyvperplanes B BB I @ @

(1-D, a point/ threshold)

(2-D, aline) (3-D, aplane)

Logistic Regression may be unstable for well separated classes and few examples. Why?



Two-class Linear Discriminant Functions (K=2)

d
* y(x)=w'x + w, = ZW‘X‘+W°
=1

Where, w' is the weight vector and w, is the bias. The negative of

bias (i.e. -w,) sometimes is called as threshold.
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Distance of Origin to Decision Surface (Bias: wy)

;{:2“
. . .
" 1(xX)=wT x+ w,=0 Let x, and Xg be points that lie
R, on the decision surface.
Xa x y(Xa) = y(xg) =0
" XB (x)
i
T - T -
o W Xy +tW, = WXgt+tw, =0
~ I

v, W' (x, —xg) =0

X, — Xg is an arbitrary vector

) If X is a point on the decision
parallel to the line.

surface, y(x) = 0 -> w'x = -w,

So, the normal distance from Hence, w_is orthogonal to
origin to decision surface: every vector lying on the

Wix o, 0 q decision surface. [yl 1ile) 0
|| w | | w | » Wy + W,

vV VY




Distance of a point X’ to the Decision surface (r)

2t Let ‘X’ be an arbitrary point and .
Ry y)=w! x+w,=0 be it’s orthogonal projection on the
Rz decision surface.
/! * -“‘r ", .
w / y(x) ) X=X +T7_7 byvector addition—
5wl w|]
Xl . ]
— Second term is a normalized vector
I
o to the decision surface, which is
™ collinear with ‘w’.
W .
As TSI 1, we need to scale it by r.
( v
- T _ pJ _ _ W
Asy(x1)=0 andw'w = | |w||? B y(x) =W X+ W =W (32 +r70r ) + W
B W +w,+ W =g+ HWI® _ _
9 0™ W T = yeo il




Multi-class Linear Discriminant Functions (K>2)

Approach 1: By combining a number of two-class discriminant

functions.

Ci

not Cl

not Co

(K-1 classifiers with each one
separating points in a particular
class C, from points not in that

class) one-versus-the-rest

Alternative—=>

(K (K-1)/2) classifiers with one for
every possible pair of classes. Each
point is classified according to a

majority vote. TRV T ere s




Another Example...

.
b, +x,"w.>0

b, +x,"w;<0,j=1..c,j!=c

y = prgmax(b; + x" w;

J
j=1,..c

global maximum



Solution: Using K-discriminant functions

* Building a single K-class discriminant comprising K-linear
functions of the form:
Y (X) =w T X+ w,

* Then, assigning a point x to class C if y,(x) > y;(x), ¥ j # k.

* The decision boundary between C, and C; : y,(x) = y;(x)

* Defined by: (w, —w;)" x + (W, — W;5) = 0—Same as 2-class

 Hence, same geometrical properties apply.

Decision regions of such discriminants are always singly

connected and convex.

Proof of Convexity Next...



Proof of Convexity of Decision Region

r=Az, +(1-A)x

B

Where, ) < A <1

From the Linearity of
Discriminant functions:

Ye(X) = Ayr(xa) + (1 = Ayk(xs)

As X, and X; lie inside Ry :

Yi(xa) > y(xa)and yy(xp) > y,(xp)
VJjFkDy.(X) > y;(X) P J lesinr,

X must also lie in Ry Ry is Singly Connected and Convex



Multi-class Classification using LDA (sklearn)

from sklearn.datasets import load_wine [confusion_matrix(y_test,y_pred)
dt = load wine()

X = dt.data

y = dt.target array([[13,

X_train,X_test,y train,y_test=
train_test_split(X,y,test_size=0.3)

|da.fit(X_train,y_train)

y_pred = lda.predict(X_test)
print(accuracy_score(y_test,y_pred))

0.9814814814814815

num_records = wine_data.data.shape[@] . .
S LT 5 Alcohol, magnesium, hue, proline, ...



Least Squares for Classification

* Straightforward way to adapt regression techn es for
classification tasks.

* How do we compute y(x), and w,, w;, w,, ..wy ?

* Each class C, is described by its own linear model
* v (x) =w," x+w,, (where x and w have D dimensions each)
* We can group these together using a vector notation:

y(x) = VLVISE —— Augmented input vector (1, xT)T
A Parameter matrix whose kth column is a D+1-dimensional
vector: Wy = (wyo, Wi )7t

A new input x is then assigned to a class for which the output
- T3 . .
is largest. Yr = W, X GetW by minimizing the Sum-of-squares.



An example classification using LDF

What class a point (2,1) will belong to? 5

Suppose we have a dataset of two classes: Class A and Class B. Each data point has two
features, x; and x,. Our task is to classify new data points into either Class A or Class B using
a linear discriminant function.

Class A (positive class): X, = {(2,3), (3,3), (4,5), (5,6)} & Class B (negative class): X; =
{(1,1),(2,2),(3,1),(4,2)}

Step 1: Define the Linear discriminant function:
g(x) = wyx; + w,x, + w,, Decision rune is: If g(x) > 0, classify as Class A, else Class B.
Step 2: Train the classifier:

Suppose, after training we get the LDF as: g(x) = 2x, + 3x, - 15

Linear Classification using Least Squares

> Least squares T o omen
® ClassB
Step 3: Classify new points: ®] — oeasionBoundary: o= -3 +5
x =(3,4) 2 g(3,4)=2X3 +3X4-15=3 >
=> As, g(3,4) = 3 >0, we classify it as Class A. 4+

X2

Decision boundary:
g(x)=0=>x,=(-2/3).x, +5




Minimizing sum-of-squares error func

Let there be a training dataset {x,, t,} wheren =1, ...N

Define a matrix T whose nt" row is the vector t,7 and matrix x
whose nt row is: x "

Then, the sum-of-squares error function can be written as:

s

Ep(W) = %Tr {Ei{if _T)T(XW — T}}

Multiplying a matrix with its’s transpose results in a square
matrix.

Taking a Trace of this square matrix (sum of the elements on
the main diagonal)




LSE Computation: An Example

‘ ' 3 o Hyo ov Jv
ol b B e R
o , LR = sl e SURSE e
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Minimizing Sum-of-Squares

1
E(w) = St (Xw — )" (Xw — t)) BE(w) = %tr (W' XTXw — w' Xt — 7 Xw + ')

Since tr(w? XTt) and tr(t! Xw) are scalars, and tr(AB) = tr(BA), we can combine these two
terms:

1 1 .
E(w) = St (w' X Xw) — tr (' Xw) + Etr (t't)  To minimize the error, set the

l derivative equal to zero:
J T "
w ;
= XT'Xw - X't =
ﬁi (%tr ('wTXTXw)) — X1 Xw o) ow v 0
w

) w= (XTX) ' XTt pseudoinverse solution




Least-squares: highly sensitive to outliers

—4 -2 0 2 4 6 8 —4 =2 0 2 4 6 &

Magenta: Least squares, Green: Logistic regression




Least squares: more severe problems

Certain datasets: Unsuitable 3-classes, 2-D space, synthetic data
6 . . , , , 6
4 i ol
Z ] 2
L&)
of % 0f
-2r 2t
4t 4
—6 ' —6
-6 -4 =2 0 2 1 g —6
(Least-squares classification) (Logistic Regression classification)

The region of input space assigned to the green class is too small and so
most of the points from this class are misclassified.



Fisher’s Linear Discriminant: Motivation

e Why do we need it?

Original space Decision boundary
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Question: How difficult are these transformations to figure out?

Image source: https://sthalles.github.io/



Fisher’s Linear Discriminant

o .
v
+ T
M'

Ronald A. Fisher

* View classification in terms of dimensionality reduction
* Project D-dimensional input vector x into one
dimension using: y = w'x
* Place threshold on vy to classify y >= -w, as class C, else
class C,
 We get a standard linear classifier

* Classes well-separated in D-dimension space may strongly
overlap in 1-dimension

* Adjust component of the weight vector w
* Select projection to maximize class-separation

FLD seeks to maximize the ratio of between-class variance to within-class

variance, thus maximizing class discrimination.




An illustration of Fisher’s LDF

4} o 4
ST
2 - - ;'.;': 2r - ‘-".,:".'
i Atk
ot “‘”’, | o
ey,
2} /8 —2
""'"n,.
; , Sy
-2 2 & -2 2 &
(Projection onto the line joining (Projection based on Fisher’s
the class means) Linear discriminant function)

What is the degree of class overlap? Is the class separation improved?




Maximizing Mean Separation

* Let us consider a two-class problem with N, points of C,
class and N, points of C, class

— 1
¢ Mean VeCtorS: Tnﬁ - -\—- Z ':B.n m:' = Z :.Bn

Y1 neC, ;\'1 nec,

* Choose w to best separate class means:

* Maximize m, —m; =w'(m, —m,), where m, = w'm, is the
mean of the projected data from class C,

 Can be made arbitrarily large by increasing the magnitude
of w:

e We could have w to be of unit lengthi.e. *,uwi =1
* Using a Lagrange multiplier, maximize
w x (mz2 —my ) There is still a problem with this approach...



lllustration of the problem

Data points histogram
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Image source: https://sthalles.github.io/

After re-projection, the data exhibit some sort of class
overlapping -shown by the yellow ellipse on the plot.

This difficulty arises from the strongly non-diagonal co-variances of the
class distributions.



Minimizing Variance and Optimizing

* Project D-dimensional input vector x into one dimension
using:y, = W'x,

* The within-class variance of the transformed data from
class C, is given by:

S = ;b(yn‘ m,)?
* Total witf_ﬂn—class variance for the whole dataset is: s;? + 5,2
* Fisher’s criterion:  J(w) = (m, — my)*/s,>+s,>
Rewriting (to make the dependence on w explicit: J(w) = wiSgw / w! Syw -

Where, Sg = (m, — m,)(m, — m,)" is the between-class covariance matrix &
Sy =Zpec1(X,— m)(x, — m)+X, c-(x, —m,)(x, —m,)" the within-class covariance matrix.

. . . . . . . v
C Differentiating with respect to w, J(w) is maximized when: o sgw)Sww =" Sgw)Spw

Dropping scalar factors, and noting S; is in the same direction as m, — m,
. H H -1. !
and multiplying both the sides by S, : [w o S (m,—m,) ]) Fisher’s LD




Optimization of J(w)

i-? 3 anl — N an i T
dJ(w) _ I (w)D(w) — N (m}rmﬂ(u} Quotient rule

dw (D(w))?
iﬁf{w] = %(uTISﬁu!] = 25pw iD(-r,.u) = i(wTSu-wj = 28w
dw dw dw dw

dJ(w)  2Spw(w! Syw) — 2Syw(w! Spw)
dw (wT Syw)?

To maximize J(w): St;-w(wTSu-w) — S['['?.LT(’EUTSET_U] =0

Sﬁ,igﬂw:AW T_his IS an eige_nvalue_ problem, where A is the
eigenvalue, and w is the eigenvector.




Illustration with Fisher’s LDF
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Fisher’s Linear Discriminant Functions

Original Feature Space:
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
5.1 1.

Reduced Feature Space using Fisher's LDA:
LD1 ID2 target
8.061800 -0.300421
7.128688 0.786660
7.489828 0.265384
6.813201 0.670631
8.132309 -0.514463

Ref: https://developer.ibm.com/tutorials/awb-implementing-linear-discriminant-analysis-python/




Thank you!




