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LINEAR DISCRIMINANT ANALYSIS



Linear Discriminant Functions: Applications

• Fisher’s Linear Discriminant Analysis for reducing the number of features
required for Face Recognition.

• Classifying patient’s disease state as Mild, Moderate or Severe.

• Identifying the type of customers who might buy a particular product.



Linear Discriminant Functions

• Used to discriminate between two or more classes based on
a set of predictor variables.

• Learns the mapping between feature vector and class labels.

• Does it not create a decision boundary?

Discriminant Function
x = [x1,..,xD]T CK

Logistic Regression may be unstable for well separated classes and few examples. Why?

Hyperplanes

(1-D, a point/ threshold) (2-D, a line) (3-D, a plane)



Two-class Linear Discriminant Functions (K=2)

• y(x) = wT x + w0 =

Where, wT is the weight vector and w0 is the bias. The negative of

bias (i.e. -w0) sometimes is called as threshold.

wi xi + w0

C1 : 

y(x) > 0

C2 : 

y(x) < 0

orientation

(geometry of LDF in 2-dimension)

location

If w0 = 0, then the
hyperplane will pass
through what?

3-dimension



Distance of Origin to Decision Surface (Bias: w0)

• Let xA and xB be points that lie
on the decision surface.

y(xA) = y(xB) = 0

wT xA + w0 =  wT xB + w0 = 0

wT (xA – xB) = 0

If x is a point on the decision
surface, y(x) = 0 -> wTx = -w0

So, the normal distance from
origin to decision surface:

Hence, w is orthogonal to
every vector lying on the
decision surface. orientation

xA – xB is an arbitrary vector
parallel to the line.

xA
xB



Distance of a point ‘x’ to the Decision surface ( r )

Let ‘x’ be an arbitrary point and
be it’s orthogonal projection on the
decision surface.

by vector addition

Second term is a normalized vector
to the decision surface, which is
collinear with ‘w’.

= 1As                   , we need to scale it by r.

As y(     ) = 0  and wTw = ||w||2                   y(x) = wT x + w0 = wT (              ) + w0

wT + w0 +   
wTw

= 0 + r = r.||w|| r  =  y(x) / ||w||



Approach 1: By combining a number of two-class discriminant
functions.

Multi-class Linear Discriminant Functions (K>2)

(K-1 classifiers with each one
separating points in a particular
class Ck from points not in that
class) one-versus-the-rest

K 
= 
?

Alternative

(K (K-1)/2) classifiers with one for
every possible pair of classes. Each
point is classified according to a
majority vote. one-versus-one

K 
= 
?



Another Example…

bc + xp
T wc > 0

bj + xp
T wj < 0, j =1…c, j != c

y = argmax bj + xT wj
j = 1, …c

global maximum



Solution: Using K-discriminant functions

• Building a single K-class discriminant comprising K-linear
functions of the form:

• yk (x) = wk
T

• Then, assigning a point x to class Ck if yk(x) > yj(x), V j = k.

• The decision boundary between Ck and Cj : yk(x) = yj(x)

• Defined by: (wk – wj)
T x + (wk0 – wj0) = 0

• Hence, same geometrical properties apply.

x + wk0

Same as 2-class

Decision regions of such discriminants are always singly
connected and convex.

Proof of Convexity Next…



Proof of Convexity of Decision Region

Ri

Rj

Rk

xA

xB

x

x must also lie in RK RK is Singly Connected and Convex

From the Linearity of
Discriminant functions:

Where,

As XA and XB lie inside RK :

and

Lies in RK



Multi-class Classification using LDA (sklearn)

X_train,X_test,y_train,y_test = 
train_test_split(X,y,test_size=0.3) 

lda.fit(X_train,y_train)

Alcohol, magnesium, hue, proline, …



Least Squares for Classification
• Straightforward way to adapt regression techniques for

classification tasks.

• How do we compute y(x), and w0, w1, w2, …wd ?

• Each class Ck is described by its own linear model:

• yk(x) = wk
T x + wk0 (where x and w have D dimensions each)

• We can group these together using a vector notation:

A Parameter matrix whose kth column is a D+1-dimensional
vector:

Augmented input vector

A new input x is then assigned to a class for which the output
is largest. Get      by minimizing the Sum-of-squares.



An example classification using LDF
• Suppose we have a dataset of two classes: Class A and Class B. Each data point has two

features, x1 and x2. Our task is to classify new data points into either Class A or Class B using
a linear discriminant function.

• Class A (positive class): XA = {(2,3), (3,3), (4,5), (5,6)} & Class B (negative class): XB =
{(1,1),(2,2),(3,1),(4,2)}

• Step 1: Define the Linear discriminant function:

g(x) = w1x1 + w2x2 + w0 , Decision rune is: If g(x) > 0, classify as Class A, else Class B.

• Step 2: Train the classifier:

Suppose, after training we get the LDF as: g(x) = 2x1 + 3x2 - 15

• Step 3: Classify new points:

x = (3,4)  g(3,4) = 2X3 + 3X4 -15 = 3

 As, g(3,4) = 3 > 0, we classify it as Class A.

What class a point (2,1) will belong to?

• Decision boundary:

g(x) = 0 x2 = (-2/3).x1 + 5

Least squares



Minimizing sum-of-squares error func

Let there be a training dataset {xn, tn} where n = 1, …N

Define a matrix T whose nth row is the vector tn
T and matrix  

whose nth row is: 

Then, the sum-of-squares error function can be written as:

Multiplying a matrix with its’s transpose results in a square
matrix.

Taking a Trace of this square matrix (sum of the elements on
the main diagonal)



LSE Computation: An Example



Minimizing Sum-of-Squares

0

To minimize the error, set the
derivative equal to zero:

= 0

pseudoinverse solution



Least-squares: highly sensitive to outliers 

Magenta: Least squares, Green: Logistic regression



Least squares: more severe problems

(Least-squares classification) (Logistic Regression classification)

3-classes, 2-D space, synthetic data

The region of input space assigned to the green class is too small and so
most of the points from this class are misclassified.

Certain datasets: Unsuitable



Fisher’s Linear Discriminant: Motivation

• Why do we need it?

Question: How difficult are these transformations to figure out?

Image source: https://sthalles.github.io/



Fisher’s Linear Discriminant

• View classification in terms of dimensionality reduction

• Project D-dimensional input vector x into one
dimension using: y = wTx

• Place threshold on y to classify y >= -w0 as class C1 else
class C2

• We get a standard linear classifier

• Classes well-separated in D-dimension space may strongly
overlap in 1-dimension

• Adjust component of the weight vector w

• Select projection to maximize class-separation

FLD seeks to maximize the ratio of between-class variance to within-class
variance, thus maximizing class discrimination.

Ronald A. Fisher



An illustration of Fisher’s LDF

(Projection onto the line joining
the class means)

What is the degree of class overlap?

(Projection based on Fisher’s
Linear discriminant function)

Is the class separation improved?



Maximizing Mean Separation

• Let us consider a two-class problem with N1 points of C1

class and N2 points of C2 class

• Mean vectors:

• Choose w to best separate class means:

• Maximize m2 – m1 = wT(m2 – m1), where mk = wTmk is the
mean of the projected data from class Ck

• Can be made arbitrarily large by increasing the magnitude
of w:

• We could have w to be of unit length i.e.

• Using a Lagrange multiplier, maximize

There is still a problem with this approach…



Illustration of the problem

After re-projection, the data exhibit some sort of class
overlapping - shown by the yellow ellipse on the plot.

Image source: https://sthalles.github.io/

This difficulty arises from the strongly non-diagonal co-variances of the
class distributions.



Minimizing Variance and Optimizing 

• Project D-dimensional input vector x into one dimension
using: yn = wTxn

• The within-class variance of the transformed data from
class Ck is given by:

sk
2 =          (yn- mk)

2

• Total within-class variance for the whole dataset is: s1
2 + s2

2

• Fisher’s criterion:

Rewriting (to make the dependence on w explicit:

Where,                                           is the between-class covariance matrix &

&                                                          I  the within-class covariance matrix.

Differentiating with respect to w, J(w) is maximized when:

Dropping scalar factors, and noting SB is in the same direction as m2 – m1

and multiplying both the sides by SW
-1 : Fisher’s LD



Optimization of J(w)

Quotient rule

To maximize J(w):

This is an eigenvalue problem, where λ is the

eigenvalue, and w is the eigenvector.
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Fisher’s Linear Discriminant Functions

Ref: https://developer.ibm.com/tutorials/awb-implementing-linear-discriminant-analysis-python/
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Assignment 3



Thank you!


