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A graph is a way of representing
relationships that exist between pairs of
objects.

A graph is a pair (V,
E), where:

V is a set of nodes,
called vertices.
E is a collection of
pairs of vertices,
called edges.

Vertices and edges
are positions and
store elements.

GRAPH ALGORITHMS

(Social Network)



GRAPH APPLICATIONS CONTINUED…
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Directed Acyclic Graph

(Recommender Systems) (Internet topology)(Abstract Syntax Tree)



-End vertices (or endpoints) of an edge

 endpoints of a?

-Edges incident on a vertex

 edges incident on Y?

-Adjacent vertices

 Y and V: are they adjacent?

-Degree of a vertex

 X has degree how much 

-Parallel edges

 which are parallel edges here?

-Self-loop

 which one is a self-loop?
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TERMINOLOGIES 



TERMINOLOGIES 

(Finite Graph)

(Infinite Graph)

Simple graph Multi graph Complete graph 

Weighted graph                                Sub-graph (Directed graph)



P1

CONTINUED…
-Path: sequence of alternating vertices
and edges

 A simple path, & not a simple path
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-Cycle

• circular sequence of alternating

vertices and edges

A spanning tree: a sub-graph of a

graph, which includes all the

vertices of the graph with a

minimum possible number of

edges.

A directed graph can have at most ? edges, where n is the number of vertices. An undirected graph can have at most ? edges. Sparse graph: A graph in which the

number of edges is much less than the possible number of edges. Dense graph: A graph in which the number of edges is close to the possible number of edges.



GRAPH ADT
Vertices and edges

 are positions, store elements

Accessor methods

 e.endVertices(): a list of the two
endvertices of e

 e.opposite(v): the vertex opposite of v
on e

 u.isAdjacentTo(v): true iff u and v are
adjacent

 *v: reference to element associated
with vertex v

 *e: reference to element associated
with edge e

Update methods

 insertVertex(o): insert a vertex storing
element o

 insertEdge(v, w, o): insert an edge (v,w)
storing element o

 eraseVertex(v): remove vertex v (and its
incident edges)

 eraseEdge(e): remove edge e

Iterable collection methods

 incidentEdges(v): list of edges incident on v

 vertices(): list of all vertices in the graph

 edges(): list of all edges in the graph

Linear or Non-linear ADT?

A graph: directed/ undirected, cyclic/ acyclic, connected/

disconnected.

A tree: special type of graph. A connected Acyclic graph. N

nodes and N-1 edges.



DATA STRUCTURES FOR GRAPHS

An adjacency list represents a graph as an array of linked lists.

An adjacency matrix is a 2D array of V x

V vertices. Each row and column represent

a vertex.

An adjacency list is efficient in terms of storage because we only 

need to store the values for the edges.
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CONTINUED…
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Quick insertions and

deletions of edges?

Finding an edge in

the graph?

If it is a sparse

graph, which one is

better?



COMPLEXITY 
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GRAPH TRAVERSALS: DEPTH FIRST (DFS)

A graph traversal is a systematic procedure for exploring a graph by examining all of its vertices and

edges.

Source: https://levelup.gitconnected.com/ (A path in a Maze)

can be used for:

1. Testing whether the graph G is connected?

2. Computing a spanning tree if exists

3. Computing a path between two vertices

4. Finding out if there exists a cycle in G

5. Finding strongly connected components (if

each vertex has a path to every other vertex)
What is the complexity? 

Recursive 

and 

Backtracking 

algo.

https://levelup.gitconnected.com/
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DFS IMPLEMENTATION



BREADTH FIRST SEARCH (BFS)

Testing whether the graph G is connected, Computing a

spanning tree if exists, Computing a shortest path

between two vertices, Finding out if there exists a cycle

in G.



DIRECTED GRAPHS (DIGRAPHS)
• A graph with all of its’ edges as directed. 
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REACHABILITY THROUGH TRANSITIVE CLOSURE
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• Alternatively, we can perform DFS starting at

each vertex.

• Gives reachability information



DIRECTED ACYCLIC GRAPHS (DAG)

Applications:

-Prerequisites between courses of a degree
program: Micro processor for Comp arch.

-Scheduling constraints between the tasks of
a project: Traditional and Advanced Data
structures for completing the BITS F211
project.

In order to get a job you need to have work experience, but in order to get work experience you

need to have a job.

A digraph admits a topological ordering if and

only if it is a DAG (i.e. has no cycles).
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WHY DIJKSTRA’S ALGO FOR SHORTEST PATH?

If there is a negative weight, will it work properly?

From a source to all other nodes  shortest path tree

Is BFS possible?

Ok for undirected and uniform cost

graphs.
Applications: Google maps, OSPF: A Link state routing

algorithm in the Internet etc.

A B

D

C

E

2

3

3
8

9

1

1

2
Edsger W. Dijkstra

Is it not a greedy algorithm?

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


DIJKSTRA’S SHORTEST PATH EXAMPLES 



SHORTEST PATH: DIJKSTRA’S EDGE RELAXATION

Consider an edge e = (u,z) such that

 u is the vertex most recently added to the cloud

 z is not in the cloud

The relaxation of edge e updates distance d(z) as follows:

d(z)  min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

zs
u

d(z) = 60
d(u) = 50

zs
u

e

e



AN EXAMPLE
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Dijkstra’s algorithm runs in O((n+m)logn) time, using a min priority queue implemented with a heap. 



MINIMUM SPANNING TREES (MST)

Spanning subgraph

 Subgraph of a graph G containing all
the vertices of G

Spanning tree

 Spanning subgraph that is itself a tree

Minimum spanning tree (MST)

 Spanning tree of a weighted graph
with minimum total edge weight

Applications

 Communications networks

 Transportation networks
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MST: KRUSKAL’S ALGORITHM
Algorithm KruskalMST(G)

for each vertex v in G do

Create a cluster consisting of v

let Q be a priority queue.

Insert all edges into Q

T  

{T is the union of the MSTs of the clusters}

while T has fewer than n - 1 edges do

e  Q.removeMin().getValue()

[u, v]  G.endVertices(e)

A  getCluster(u)

B  getCluster(v) 

if A  B then

Add edge e to T

mergeClusters(A, B)

return T
Running time of Kruskal’s algorithm is O(|E|.log|V|)



ONE MORE EXAMPLE OF KRUSKAL’S ALGO



PRIM-JARNIK’S ALGORITHM
-Similar to Dijkstra’s algorithm

-We pick an arbitrary vertex s and we grow the MST

as a cloud of vertices, starting from s

-We store with each vertex v label d(v) representing

the smallest weight of an edge connecting v to a

vertex in the cloud

-At each step:

-We add to the cloud the vertex u outside the cloud

with the smallest distance label

-We update the labels of the vertices adjacent to u

Algorithm PrimJarnikMST(G)
Q  new heap-based priority queue
s  a vertex of G
for all  v  G.vertices()

if  v = s
v.setDistance(0)

else 
v.setDistance()

v.setParent()
l  Q.insert(v.getDistance(), v)
v.setLocator(l)

while  Q.empty()

l  Q.removeMin()

u  l.getValue()
for all  e  u.incidentEdges()

z  e.opposite(u)
r  e.weight()
if  r < z.getDistance()

z.setDistance(r)
z.setParent(e)
Q.replaceKey(z.getEntry(), r)



EXAMPLE
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Complexity: Each vertex inserted into priority queue once:  O(VlogV)

Each edge can cause  decrease key (update) operation: O(E.logV)

 O((V+E) log V) using Adjacency list. 



THANK YOU!

Good luck for Comprehensive exams!


