N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

ZAN\YANVZANVANYVZANYZANYETS
NZNZNZNININI\ -
INININININININLC
NYZANYZANYZANYZANYZANYZANTZAN

JANVIANVIANVIANVIANVIANVIANYS

(S F211: DATA STRUCTURES & ALGORITHMS
(2"° SEMESTER 2024-25) |
GRAPH ALGORITHMS

BITS-Pilani Hyderabad Campus

GRAPH ALGORITHMS

A graph is a way of representing
relationships that exist between pairs of
objects.

A graph is a pair (V, 2 4

/
\@ "

V is a set of nodes,
called vertices.

E is a collection of
pairs of vertices,
called edges.

Vertices and edges
are positions and
store elements.

1

O
O

/

(Social Network)

g_u\

r, “Birla. Mandlr
e éaoﬁs

- N

T Xy ‘aCMR Institute
//%mechnology

Munirabad
Kandlakoya\mﬁmwﬁ SH.:&MRPET
- éoé%‘oﬁ ms
' Leonla Holistic
'Destination
OB
Devarayamjal FORE..
)(I33Y BSorosrosrds
3g UTM - Underith
05_‘_:--’- / ul
! Kaziguda ~ Thimmaipall
seestiees Auditorium BIRDH
Cheeryal *
Laxminarasimha...
. U"§E)
Bofy.
Loyola Academy
o@rer Sgrare
DAMMAIGUDA
d;&:r-gond:-t‘.‘.
SAINIKPURI
44 R RT)
NAGARAM
e do
CHERLAPALLI
SEHY
Tadbund MOULA ALI
Hanuman Temple Feod
MALKAJGIR|
Hoo, R0 MALLAPUR
Bogrrd
pany Bhagyanaga
aerh.\ / Secunderabad Nandanavar?gm Pgrk
\\\ }/ Railway Station Road gt
50558550 ar5)

¢

Osmania
University

163 =={jppAL
/ e’“ﬁé

Sansthan Trust

5-/‘/’ \Hyderabadffﬂshrl Shirdi Sai Babﬂd

Rajiv Gandhi

International Cricket.
o°8BS o /
aa&&&ﬁé\/ JSSS Farm

[>

-

88 29 O
Y &..

Muchiunda 9

|GRAPH APPLICATIONS CONTINUED. .

P e e e e S

td.bits-hyderabad.ac.in

Bought by user A and B

[=]
/
[x] [+]
/ \
[10] [*]
/ \
[y] [3]

Directed Acyclic Graph

18.284.35.14 10.284.35.14

/ ! - \ T o

109.204.32.2 19.204.32.2
sa

Similar users

—10)

N e e e e e e e e e e e e e e e e e e e = = = = =

(Abstract Syntax Tree) (Recommender Systems) (Internet topology)

1o@-@.gwd.atll.us. linode.com 74.207.239.186 AKAMAI-LINODE-AP Akamai Connected Cloud,

Traceroute!

Country Avg (ms)

74.207.224.0/20 &5

TERMINOLOGIES

-End vertices (or endpoints) of an edge
* endpoints of a? /

-Edges incident on a vertex

= edges incident on Y?

-Adjacent vertices
*Y and V: are they adjacent?

-Degree of a vertex
* X has degree how much

-Parallel edges

" which are parallel edges here?

Pseudo graph
-Self-loop \ ° y
* which one is a self-loop?

TERMINOLOGIES o - o

(Finite Graph) Simple graph Multi graph Complete graph

m—————
-o

10 4
:I AR
1 Ss
\ RS
\ "
A B © :
\
So 20 R
30 b N,
D ® F —
40 = :

(Infinite Graph) Weighted graph Sub-graph (Directed graph)

"CONTINUED. ..

-Path: sequence of alternating vertices
and edges

A spanning tree: a sub-graph of a
graph, which includes all the
vertices of the graph with a
minimum possible number of
edges.

* A simple path, & not a simple path

¢,
g -Cycle

* CIFCU|GI‘ Sequence Of qlternqhng Undirected Spanning Minimum Spanning
o Graph Tree Tree
Verflces Gnd edges Cost = 11(=4+5+2) Cost = 7(=4+1+2)

A directed graph can have at most ? edges, where n is the number of vertices. An undirected graph can have at most ? edges. Sparse graph: A graph in which the

number of edges is much less than the possible number of edges. Dense graph: A graph in which the number of edges is close to the possible number of edges.

A graph: directed/ undirected, cyclic/ acyclic, connected/
disconnected.

A tree: special type of graph. A connected Acyclic graph. N
nodes and N-1 edges.

Vertices and edges Update methods

* are positions, store elements . . .
P ! “insertVertex(o): insert a vertex storing

Accessor methods element o

“e.endVertices(): a list of the two “insertEdge(y, w, o): insert an edge (v,w)
endvertices of e storing element o

- e.opposite(v): the vertex opposite of v “ eraseVertex(v): remove vertex v (and its
on e incident edges)

* u.isAdjacentTo(v): true iff u and v are " erasebdge(e): remove edge e
adjacent .
. | lterable collection methods

v: reference to element associated
with vertex v
*

* incidentEdges(v): list of edges incident on v

* vertices(): list of all vertices in the graph

e: reference to element associated
with edge e * edges(): list of all edges in the graph

Linear or Non-linear ADT?

'DATA STRUCTURES FOR GRAPHS

€
N
—_
—_
o
O O O

An adjacency list represents a graph as an array of linked lists.

An adjacency matrix is a 2D array of V x

An adjacency list is efficient in terms of storage because we only V vertices. Each row and column represent

need to store the values for the edges.
a vertex.

|(ONTINUED...

/Ad c\

Quick insertions and
deletions of edges?

Finding an edge in
the graph?

If it is a sparse
graph, which one is
better?

\® </

(Edge list) (Adjacency list) (Adjacency matrix)

std;|
void addEdge(vector<int> adj[], int s, int d) {
adj[s].push_back(d);
adj[d].push_back(s);

}
void printGraph(vector<int> adj[], int V) {

(int d i d <V ++d) {

COMPLEXITY

Loo~NOYUT A WNBE

Operation | Time cout "\n Vertex " d oMo
vertices | O(n) Cauto x : adj[d])
edges | O(m) cout n_gom X;
endVertices, opposite | O(1) ("\n");
incidentEdges, isAdjacentTo | O(m) }
isincidentOn | O(1)
insertVertex, insertEdge, eraseEdge, | O(1) int mainQ) {
eraseVertex | O(m) 16 T :
17 vector<int> adj[V];
Operation | Time 18 addEdge(adJ, ,);

vertices | O(n)

adges | O(m) 19 addEdge(adj, s

’
endVertices, opposite 1) 20 addEdQECGdJ 3 s);
vincidentEdges() deg(v)) 21 addEdge(qu , y);

islncidentOn)

1
insertVertex, insertEdge, eraseEdge, |

)

o(
o(
0/
risAd] To(w) | O(min(deg(v),d y q o
visAdjacentTo(w) ()Emm(eg(v),deg(w)) 37 pl""l.ntGl"Gph(CldJ : V);
0/
o

eraseVertex(v) deg(v))

Operation | Time

vertices | O(n) Vertex 0:

edges | O(n")

Vertex

endVertices, opposite | O

isAdjacentTo, islncidentOn Vertex

incidentEdges

Vertex

Adjacency matrix) (Adjacency list) (Edge list)

C
0
insertEdge, eraseEdge, | O
insertVertex, eraseVertex | O

)(n~) Vertex

V
|

| GRAPH TRAVERSALS: DEPTH FIRST (DFS)

A graph traversal is a systematic procedure for exploring a graph by examining all of its vertices and

edges.

]

(A pathin a Maze)

Source: https:/ /levelup.gitconnected.com

can be used for:

Testing whether the graph G is connected?
Computing a spanning tree if exists
Computing a path between two vertices
Finding out if there exists a cycle in G

Finding strongly connected components (if
each vertex has a path to every other vertex)

Ohwbd -

ﬂ

o

Igorithm DFS(G,v):

Input: A graph G and a vertex v of G \

Output: A labeling of the edges in the connected
edges and back edges
label v as visited
for all edges e in v.incidentEdges() do
if edge e is unvisited then
w «— e.opposite(v)
if vertex w is unexplored then
label e as a discovery edge
recursively call DFS(G,w)
else
label e as a back edge

Recursive
and
Backtracking
algo.

/

What is the complexity?

https://levelup.gitconnected.com/

540 I1dWVXI NV

std;
class DFSGraph {

int V; // No. of vertices
DFS IMPI_EMENTATI ON list<int> *adjlList; // adjacency list
void DFS_util(int v, bool visited[]);
) i public:
bool v151ted new bool[V]; DFSGraph(int V) {
(int 1 =0; 1 L this->V = V;
visited[1i] false: adjList = new list<int>[V];
(int 1 = @; i 2 ¥
(V'lS'l.ted['l] fal se void addEdge(lnt v, int w){ ‘
DFS_util(i, v151ted), adjList[v].push_back(w); // Add w to v’s list.

}
} void DFSQ); // DFS traversal function

int mainQ) { b

DFSGraph gdfs(t),
gdfs.addEdge(9,
gdfs.addEdge(?
gdfs.addEdge(? cout v .
gdfs.addEdge(i ; // recursively process all the adjacent vertices
gdfs.addEdge(2, 4); list<int>::iterator ij;
gdfs.addEdge(4, 5); (i = adjList[v].begin(); i adjList[v].end(); ++1)
gdfs.DFSQ); (!visited[*i])

0; DFS_util(*i, visited);

void DFSGraph: :DFS_util(int v, bool visited[]) {
// current node v 1s visited
visited[Vv] ;

n "

| BREADTH FIRST SEARCH (BFS)

initialize collection L to contain vertex s
i—0
while L; is not empty do
create collection L;; to initially be empty
for all vertices vin L; do
for all edges e in v.incidentEdges() do
if edge e is unexplored then
w «— e.opposite(v)
if vertex w is unexplored then
label e as a discovery edge
insert w into L; |

else
label e as a cross edge
S |

Testing whether the graph G is connected, Computing a
spanning tree if exists, Computing a shortest path
between two vertices, Finding out if there exists a cycle

in G.

| DIRECTED GRAPHS (DIGRAPHS)

* A graph with all of its’ edges as directed.

(Ex: Task Scheduling)

MATH F213

(DIS. MATHS)

CS F211

CS F222
(DIS. STRUC)

(DATA STRUC)

Practice School

CS F372
(0S)

CS F303
(COMP N/W)

(S4@ peeaq)

| REACHABILITY THROUGH TRANSITIVE CLOSURE

* Gives reachability information

Algorithm FloydWarshall(G):

Input: A digraph G with n vertices
Output: The transitive closure G* of G

letvi,vo,..., v, be an arbitrary numbering of the vertices of G

? ?

Go— G
for k — 1tondo
Gy «— Gg—1
foralli,jin{l,...,n} withi+# jand i,j # k do
if both edges (v;,v¢) and (v, v;) are in G;_; then
add edge (v;,v;) to Gy (if it is not already present)
return G,

* Alternatively, we can perform DFS starting at
each vertex. G*

DIRECTED ACYCLIC GRAPHS (DAG)

gorithm TopologicalSort(G):
Input: A digraph G with n vertices
QOutput: A topological ordering v,...,v, of G

S « an initially empty stack.
for all u in G.vertices() do
Let incounter(u) be the in-degree of u.
if incounter(«) = O then
S.push(u)
i—1
while !S.empty() do
u — S.pop()
Let u be vertex number i in the topological ordering.
i—i+1
for all outgoing edges (u,w) of u do

incounter (w) < incounter(w) — 1
if incounter(w) = 0 then
S.push(w)

In order to get a job you need to have work experience, but in order to get work experience you

e
| -
(@)
(7]

o

Og
(@)

LY
(o)
o

2
;
O

o)

e
=
()
O
>
e
(V)
ks

Og
o
>~

e
<

Linear ordering

need to have a job.

g

A
Edsger W. Dijkstra

If there is a negative weight, will it work properly?
From a source to all other nodes = shortest path tree

4 N

destination

Sougi—/\/—o

[the shortest path between the source and destination

. a subpath which is also the shortest path between its source and destination

Is BFS possible? K /

s it not a greedy algorithm?

Ok for undirected and uniform cost

) Applications: Google maps, OSPF: A Link state routing
graphs.

algorithm in the Internet etc.

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

| DIJKSTRA'S SHORTEST PATH EXAMPLES

Last login: Wed Apr 27 20:37:04 on ttys0e@
[chittaranjans-MacBook-Pro:~ hota$ netstat -rn

Routing tables

Internet:
Destination
default

127

127.0.0.1
169.254
192.168.0
192.168.0.1/32
192.168.0.1
192.168.0.111/32
192.168.0.215
224.0.0/4
224.0.0.251
239.255.255.250
255.255.255.255/32
255.255.255,255

Gateway
192.168.0.1
127.0.0.1
127.0.0.1

1ink#5

1ink#5

link#5
e8:48:b8:c1:25:2c
1ink#5
a4:83:e7:69:89:c9
1ink#5
1:0:5e:0:0:fb
1:0:5e:7f:ff:fa
1ink#5
ffaiffiffaffeffaff

Flags
UGSc
ucs

UH

ucs
ucs
ucs
UHLWIir
ucs
UHLWI
UmCS
UHmLWI
UHmLWI
ucs
UHLWbI

w
U
(]

0
1
Q
1
1
7
("
0
2
0
0
1
0

Netif Expire
end
lo@
lo@
end
eno
end
end
eno
end
end
eno
end
enod
end

"= Aalankrita Resort
¢#™) And-Convention

Devarayamijal Y coe1088
la Reddy Narayana BSorasroerd g7 08 w0k
iali i THUMUKUNTA
tispeciality Hospital 24 HUHIOKUNT
3g ,
€3 1
N . ""\ ~/
D Kaziguda J BITS Pilani
see8tisees 4/ O
KOMPALLY
Edydg
D-Mart Q
@ & 3§
JEEDIMETLA LD BALAJI NAGAR
B3 eered
568
&= 43 min DAMMAIG
. 18" 83008
QSO min 18.5km Q0%
26.9 km f 4
/ ¥ Venkateswara D,Maf}®
jSwamyTemple et
1 Sose3438
Balkampet . = gdiseddo
it S CHERLAF
ma Temple O LY 3
265,008 S MOULA ALI
o Feord
D8y seraHo
@ MALKAJGIRI
Soom,20 MALLAPUR
65 Soeryrd
ameerper - Secunderabad ()
Db Do Nanda

TARNAKA
aong

|SHORTEST PATH: DIJKSTRA'S EDGE RELAXATION /

Consider an edge e = (v,z) such that
" U is the vertex most recently added to the cloud _eemTIITITTT s
7 =" d(u) =50

10 d(z) =75

= Z is not in the cloud

The relaxation of edge e updates distance d(z) as follows:

d(z) < min{d(z),d(u) + weight(e)}
Algorithm ShortestPath(G,v):
Input: A simple undirected weighted graph G with nonnegative edge weights
and a distinguished vertex v of G
Output: A label D[ul, for each vertex u of G, such that D[u] is the length of a
shortest path from v to u in G
Initialize D[v] < 0 and D[u] < +oc for each vertex u # v.
Let a priority queue Q contain all the vertices of G using the D labels as keys.
while Q is not empty do
{pull a new vertex u into the cloud}
u «— Q.removeMin()
for each vertex z adjacent to u such that zis in O do
{perform the relaxation procedure on edge (u,z)}
if D[u] +w((u,z)) < D|z] then
Dle] — D[u] + w((u,2))
Change to D|z] the key of vertex z in Q.
return the label D|u] of each vertex u

10 d(z) =60

O,

AN EXAMPLE

7 \\
’ N

Dijkstra’s algorithm runs in O((n+m)logn) time, using a min priority queue implemented with a heap.

MINIMUM SPANNING TREES (MST)

Spanning subgraph
= Subgraph of a graph G containing all
the vertices of G

Spanning tree
* Spanning subgraph that is itself a tree

Minimum spanning tree (MST)

*Spanning tree of a weighted graph
with minimum total edge weight

Applications

= Communications networks

* Transportation networks

- e e e e e e e e e

/" Algorithm KruskalMST(G) \
for each vertex vin G do
Create a cluster consisting of v
let Q be a priority queue.
Insert all edges into Q
T«
{T is the union of the MSTs of the clusters}
while T has fewer than n - 1 edges do
e < Q.removeMin().getValue|()
[u, v] < G.endVertices(e)
A < getCluster(u)
B < getCluster(v)
if A # B then
Add edge eto T
mergeClusters(A, B))
. return T e

P e e e e e e T T
o e

-

-
7
~

N o m em e e o En o En o Em e Em Em Em Em Em Em Em Em Em Em Em Em e = =

|0NE MORE EXAMPLE OF KRUSKAL'S ALGO

|PRIM-JARNIK’S ALGORITHM

-Similar to Dijkstra’s algorithm

-We pick an arbitrary vertex s and we grow the MST

as a cloud of vertices, starting from s

-We store with each vertex v label d(v) representing
the smallest weight of an edge connecting v to a

vertex in the cloud

-At each step:

-We add to the cloud the vertex v outside the cloud

with the smallest distance label

-We update the labels of the vertices adjacent to u

|lgorithm PrimJarnikMST(G)
Q < new heap-based priority queue

s < a vertex of G
for all v € G.vertices|()
if v=s
v.setDistance(0)
else
v.setDistance ()
v.setParent()
| <— Q.insert(v.getDistance(), v)
v.setLocator(l)
while —Q.empty()
| <— Q.removeMin()
u < l.getValue()
for all e € u.incidentEdges()

Z <— e.opposite(u)
r <— e.weight()

if r < z.getDistance()

z.setDistance(r)
z.setParent(e)
Q.replaceKey(z.getEntry(),

)/

Complexity: Each vertex inserted into priority queue once: O(VlogV)
Each edge can cause decrease key (update) operation: O(E.logV)

| EXA M P |_E = O((V+E) log V) using Adjacency list.

| THANK YOU!

Good luck for Comprehensive exams!

