
CS F211: DATA STRUCTURES & ALGORITHMS
(2ND SEMESTER 2024-25)

GRAPH ALGORITHMS

Chittaranjan Hota, PhD

Sr. Professor of Computer Sc.

BITS-Pilani Hyderabad Campus

hota[AT]hyderabad.bits-pilani.ac.in

A graph is a way of representing
relationships that exist between pairs of
objects.

A graph is a pair (V,
E), where:

V is a set of nodes,
called vertices.
E is a collection of
pairs of vertices,
called edges.

Vertices and edges
are positions and
store elements.

GRAPH ALGORITHMS

(Social Network)

GRAPH APPLICATIONS CONTINUED…

[=]

/ \

[x] [+]

/ \

[10] [*]

/ \

[y] [3]

Directed Acyclic Graph

(Recommender Systems) (Internet topology)(Abstract Syntax Tree)

-End vertices (or endpoints) of an edge

 endpoints of a?

-Edges incident on a vertex

 edges incident on Y?

-Adjacent vertices

 Y and V: are they adjacent?

-Degree of a vertex

 X has degree how much

-Parallel edges

 which are parallel edges here?

-Self-loop

 which one is a self-loop?

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

k

Pseudo graph

TERMINOLOGIES

TERMINOLOGIES

(Finite Graph)

(Infinite Graph)

Simple graph Multi graph Complete graph

Weighted graph Sub-graph (Directed graph)

P1

CONTINUED…
-Path: sequence of alternating vertices
and edges

 A simple path, & not a simple path

XU

V

W

Z

Y

a

c

b

e

d

f

g

h
P2

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

-Cycle

• circular sequence of alternating

vertices and edges

A spanning tree: a sub-graph of a

graph, which includes all the

vertices of the graph with a

minimum possible number of

edges.

A directed graph can have at most ? edges, where n is the number of vertices. An undirected graph can have at most ? edges. Sparse graph: A graph in which the

number of edges is much less than the possible number of edges. Dense graph: A graph in which the number of edges is close to the possible number of edges.

GRAPH ADT
Vertices and edges

 are positions, store elements

Accessor methods

 e.endVertices(): a list of the two
endvertices of e

 e.opposite(v): the vertex opposite of v
on e

 u.isAdjacentTo(v): true iff u and v are
adjacent

 *v: reference to element associated
with vertex v

 *e: reference to element associated
with edge e

Update methods

 insertVertex(o): insert a vertex storing
element o

 insertEdge(v, w, o): insert an edge (v,w)
storing element o

 eraseVertex(v): remove vertex v (and its
incident edges)

 eraseEdge(e): remove edge e

Iterable collection methods

 incidentEdges(v): list of edges incident on v

 vertices(): list of all vertices in the graph

 edges(): list of all edges in the graph

Linear or Non-linear ADT?

A graph: directed/ undirected, cyclic/ acyclic, connected/

disconnected.

A tree: special type of graph. A connected Acyclic graph. N

nodes and N-1 edges.

DATA STRUCTURES FOR GRAPHS

An adjacency list represents a graph as an array of linked lists.

An adjacency matrix is a 2D array of V x

V vertices. Each row and column represent

a vertex.

An adjacency list is efficient in terms of storage because we only

need to store the values for the edges.

v

u

w

a c

b

a

z
d

u v w z

b c d

CONTINUED…

(Edge list)

V

E

u

v

w

a b

a

u v w

b

(Adjacency list)

V

E

I(u)
I(v)

I(w)

(Adjacency matrix)

Quick insertions and

deletions of edges?

Finding an edge in

the graph?

If it is a sparse

graph, which one is

better?

COMPLEXITY
(E

d
g
e
 l
is
t)

(A
d

ja
ce

nc
y
 l
is

t)
(A

d
ja

ce
nc

y
 m

a
tr

ix
)

GRAPH TRAVERSALS: DEPTH FIRST (DFS)

A graph traversal is a systematic procedure for exploring a graph by examining all of its vertices and

edges.

Source: https://levelup.gitconnected.com/ (A path in a Maze)

can be used for:

1. Testing whether the graph G is connected?

2. Computing a spanning tree if exists

3. Computing a path between two vertices

4. Finding out if there exists a cycle in G

5. Finding strongly connected components (if

each vertex has a path to every other vertex)
What is the complexity?

Recursive

and

Backtracking

algo.

https://levelup.gitconnected.com/

A
N

 E
XA

M
PL

E
D

FS

Dead End

Backtrack and

Explore

DFS IMPLEMENTATION

BREADTH FIRST SEARCH (BFS)

Testing whether the graph G is connected, Computing a

spanning tree if exists, Computing a shortest path

between two vertices, Finding out if there exists a cycle

in G.

DIRECTED GRAPHS (DIGRAPHS)
• A graph with all of its’ edges as directed.

CS F211
(DATA STRUC)

CS F303
(COMP N/W)

CS F372
(OS)

CS F222
(DIS. STRUC)

MATH F213
(DIS. MATHS)

Practice School SWE-I

… …

(E
x
:
Ta

sk
 S

ch
e
d

ul
in

g
)

A

C

E

B

D

A

C

E

B

D

(D
ire

cte
d
 D

FS
)

REACHABILITY THROUGH TRANSITIVE CLOSURE

B

A

D

C

E

B

A

D

C

E

G

G*

• Alternatively, we can perform DFS starting at

each vertex.

• Gives reachability information

DIRECTED ACYCLIC GRAPHS (DAG)

Applications:

-Prerequisites between courses of a degree
program: Micro processor for Comp arch.

-Scheduling constraints between the tasks of
a project: Traditional and Advanced Data
structures for completing the BITS F211
project.

In order to get a job you need to have work experience, but in order to get work experience you

need to have a job.

A digraph admits a topological ordering if and

only if it is a DAG (i.e. has no cycles).

Do programming

Play

Wake up

Breakfast

Go for

jogging

Do meditation

Attend classes

Take lunch

Sleep

1

2 3

4 5

6

7

8

9

10

Take dinner

A
 t
y
p
ic

a
l
st

ud
e
nt

 d
a
y
:
To

p
o
lo

g
ic

a
l
so

rt

Linear ordering

WHY DIJKSTRA’S ALGO FOR SHORTEST PATH?

If there is a negative weight, will it work properly?

From a source to all other nodes  shortest path tree

Is BFS possible?

Ok for undirected and uniform cost

graphs.
Applications: Google maps, OSPF: A Link state routing

algorithm in the Internet etc.

A B

D

C

E

2

3

3
8

9

1

1

2
Edsger W. Dijkstra

Is it not a greedy algorithm?

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

DIJKSTRA’S SHORTEST PATH EXAMPLES

SHORTEST PATH: DIJKSTRA’S EDGE RELAXATION

Consider an edge e = (u,z) such that

 u is the vertex most recently added to the cloud

 z is not in the cloud

The relaxation of edge e updates distance d(z) as follows:

d(z)  min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

zs
u

d(z) = 60
d(u) = 50

zs
u

e

e

AN EXAMPLE

CB

A

E

D

F

0

428

 

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Dijkstra’s algorithm runs in O((n+m)logn) time, using a min priority queue implemented with a heap.

MINIMUM SPANNING TREES (MST)

Spanning subgraph

 Subgraph of a graph G containing all
the vertices of G

Spanning tree

 Spanning subgraph that is itself a tree

Minimum spanning tree (MST)

 Spanning tree of a weighted graph
with minimum total edge weight

Applications

 Communications networks

 Transportation networks

DEL

KOL

VIZ

NAG

MUM

CHE

BBSR

10
1

9

8

6

3

25

7

4

MST: KRUSKAL’S ALGORITHM
Algorithm KruskalMST(G)

for each vertex v in G do

Create a cluster consisting of v

let Q be a priority queue.

Insert all edges into Q

T  

{T is the union of the MSTs of the clusters}

while T has fewer than n - 1 edges do

e  Q.removeMin().getValue()

[u, v]  G.endVertices(e)

A  getCluster(u)

B  getCluster(v)

if A  B then

Add edge e to T

mergeClusters(A, B)

return T
Running time of Kruskal’s algorithm is O(|E|.log|V|)

ONE MORE EXAMPLE OF KRUSKAL’S ALGO

PRIM-JARNIK’S ALGORITHM
-Similar to Dijkstra’s algorithm

-We pick an arbitrary vertex s and we grow the MST

as a cloud of vertices, starting from s

-We store with each vertex v label d(v) representing

the smallest weight of an edge connecting v to a

vertex in the cloud

-At each step:

-We add to the cloud the vertex u outside the cloud

with the smallest distance label

-We update the labels of the vertices adjacent to u

Algorithm PrimJarnikMST(G)
Q  new heap-based priority queue
s  a vertex of G
for all v  G.vertices()

if v = s
v.setDistance(0)

else
v.setDistance()

v.setParent()
l  Q.insert(v.getDistance(), v)
v.setLocator(l)

while Q.empty()

l  Q.removeMin()

u  l.getValue()
for all e  u.incidentEdges()

z  e.opposite(u)
r  e.weight()
if r < z.getDistance()

z.setDistance(r)
z.setParent(e)
Q.replaceKey(z.getEntry(), r)

EXAMPLE

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0

7

2

8




B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5


7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 

7

B

D

C

A

F

E

7
4

2
8

5

7

3

9

8

0
7

2

5
4

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

Complexity: Each vertex inserted into priority queue once: O(VlogV)

Each edge can cause decrease key (update) operation: O(E.logV)

 O((V+E) log V) using Adjacency list.

THANK YOU!

Good luck for Comprehensive exams!

