
CS F211: DATA STRUCTURES & ALGORITHMS
(2ND SEMESTER 2024-25)

PATTERN MATCHING ALGORITHMS

Chittaranjan Hota, PhD

Senior Professor, Computer Sc.

BITS-Pilani Hyderabad Campus

hota[AT]hyderabad.bits-pilani.ac.in

PATTERN MATCHING: WHAT IS & WHY?
• Pattern matching is a programming technique used to check whether a given sequence of data (such
as a string, or a list) follows a specific pattern.

• Searching: Imagine you are using ctrl+F in browser or a document to find out all occurrences of a
word “climate” in a long document.

• Behind the scene, either Boyer- Moore or KMP might be working.

• Antivirus tools (Norton, McAfee, Avast) looking for presence of malicious signatures in an infected file.

• Email spam: Congratulations! You have been selected as the lucky winner of our INR 3.0 crores Mega
Prize. To claim your reward, please send us your full name, address, and banking details immediately.

• Ecommerce: “red running shoes” “Nike red running shoes for Men” (Basic text search), “red runing
shoes” “Nike red running shoes” (Fuzzy matching), “shoes for jogging” “running shoes”, “sports
shoes” (Semantic search).

DNA Sequence = "ACGTTATGCGTACGATGCGATACG" DNA Pattern = "ATGCG" [5, 15]

File content: "90906A2B68576133FFD26A2B68576190" Pattern = "6A2B685761" ⚠ [4,20]

STRING PROCESSING

• A common problem in text editing, DNA

sequence analysis, and web crawling:

finding strings inside other strings.

• P = “CGTAAACTGCTTTAATCAAACGC”

• S = “http://www.wiley.com”

• Whether “TTTAA” is a substring of the above

sequence?

O((n-m+1)m) O(nm)

BOYER-MOORE ALGORITHM

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

• Efficient string-searching algorithms used in pattern matching, especially when the pattern is

relatively short compared to the text

• Looking-glass heuristic: Right to left. Purpose is to find mismatches early.

• Character-jump (Bad character) heuristic: Shift pattern smartly. Purpose is to avoid unnecessary

comparisons or skips many comparisions.

E

X

A

M

P

L

E

ACM, 1977

THE BOYER-MOORE ALGORITHM CONTINUED…
Algorithm BoyerMooreMatch(T, P, S)

L lastOccurenceFunction(P, S)
i m - 1
j m - 1
repeat

if (T[i] == P[j])
if j == 0

return i { match at i }
else

i i - 1
j j - 1

else
{ character-jump }
l L[T[i]]
i i + m – min(j, 1 + l)
j m - 1

until i > n - 1
return -1 { no match }

T="BITSPILANI" P="PILANI"

n=10 m=6

Create a table showing the

rightmost occurrence of each

character in the pattern (L):

P I L A N I

0 1 2 3 4 5

P: P I L A N

0 5 2 3 4
L:

Run of the algorithm:

B I T S P I L A N I

P I L A N IP:

T:

l=L[T[4]]=L[P]=0 i = i +m – min(j,1+l) = 4+6-min(4,1+0)= 9

j=5

i=5i=4

j=4

i=9

Repeat the loop with i=9, and j=m-1=5 Finally, match found.

THE KNUTH-MORRIS-PRATT’S ALGORITHM
Knuth-Morris-Pratt’s (KMP) algorithm compares the pattern to the
text in left-to-right, but shifts the pattern more intelligently than
the brute-force algorithm.

When a mismatch occurs, what is the most we can shift the pattern
so as to avoid redundant comparisons?

Answer: the largest prefix of P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing
here

E

X

A

M

P

L

E

A B C A B C D A B A B C D A B C D A B D E

A B C D A B D

Text:

Pattern:

LPS Table for the above Pattern is:

0 0 0 0 1 2 0

0 1 2 3 4 5 6

LPS:

 Pattern found at Index: 15 in the Text

What should you do now?

What should you do now?

What should you do now?

• Trie is a tree like data structure used to

store collection of strings. Efficient in

retrieval.

• A trie searches a string in O(m) time

complexity, where m is the length of

the string.

• In a trie, every node except the root

stores a character value.

• All the children of a node are

alphabetically ordered. If any two strings

have a common prefix then they will

have the same ancestors.

Tries: Efficient pattern matching

• We can model the set S (strings) as a rooted

tree T in such a way, that each path from the

root of T to any of its nodes, corresponds to

a prefix of at least one string of S.

Standard Trie of all Suffixes: “banana\0”

https://www.geeksforgeeks.org/

• A Suffix Tree for a given text is a compressed trie for all suffixes of the given

text.

• If we join chains of single nodes, we get the following compressed trie, which

is the Suffix Tree for given text “banana\0”

Suffix Tree

THANK YOU!

Next Class: Graph Algorithms…

