
CS F211: DATA STRUCTURES & ALGORITHMS
(2ND SEMESTER 2024-25)

PATTERN MATCHING ALGORITHMS

Chittaranjan Hota, PhD

Senior Professor, Computer Sc.

BITS-Pilani Hyderabad Campus

hota[AT]hyderabad.bits-pilani.ac.in

PATTERN MATCHING: WHAT IS & WHY?
• Pattern matching is a programming technique used to check whether a given sequence of data (such
as a string, or a list) follows a specific pattern.

• Searching: Imagine you are using ctrl+F in browser or a document to find out all occurrences of a
word “climate” in a long document.

• Behind the scene, either Boyer- Moore or KMP might be working.

• Antivirus tools (Norton, McAfee, Avast) looking for presence of malicious signatures in an infected file.

• Email spam: Congratulations! You have been selected as the lucky winner of our INR 3.0 crores Mega
Prize. To claim your reward, please send us your full name, address, and banking details immediately.

• Ecommerce: “red running shoes”  “Nike red running shoes for Men” (Basic text search), “red runing
shoes”  “Nike red running shoes” (Fuzzy matching), “shoes for jogging”  “running shoes”, “sports
shoes” (Semantic search).

DNA Sequence = "ACGTTATGCGTACGATGCGATACG" DNA Pattern = "ATGCG"  [5, 15]

File content: "90906A2B68576133FFD26A2B68576190" Pattern = "6A2B685761"  ⚠ [4,20]

STRING PROCESSING

• A common problem in text editing, DNA

sequence analysis, and web crawling:

finding strings inside other strings.

• P = “CGTAAACTGCTTTAATCAAACGC”

• S = “http://www.wiley.com”

• Whether “TTTAA” is a substring of the above

sequence?

O((n-m+1)m)  O(nm)

BOYER-MOORE ALGORITHM

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

• Efficient string-searching algorithms used in pattern matching, especially when the pattern is

relatively short compared to the text

• Looking-glass heuristic: Right to left. Purpose is to find mismatches early.

• Character-jump (Bad character) heuristic: Shift pattern smartly. Purpose is to avoid unnecessary

comparisons or skips many comparisions.

E

X

A

M

P

L

E

ACM, 1977

THE BOYER-MOORE ALGORITHM CONTINUED…
Algorithm BoyerMooreMatch(T, P, S)

L  lastOccurenceFunction(P, S)
i m - 1
j  m - 1
repeat

if (T[i] == P[j])
if j == 0

return i { match at i }
else

i i - 1
j  j - 1

else
{ character-jump }
l  L[T[i]]
i i + m – min(j, 1 + l)
j  m - 1

until i > n - 1
return -1 { no match }

T="BITSPILANI" P="PILANI"

n=10 m=6

Create a table showing the

rightmost occurrence of each

character in the pattern (L):

P I L A N I

0 1 2 3 4 5

P: P I L A N

0 5 2 3 4
L:

Run of the algorithm:

B I T S P I L A N I

P I L A N IP:

T:

l=L[T[4]]=L[P]=0  i = i +m – min(j,1+l) = 4+6-min(4,1+0)= 9

j=5

i=5i=4

j=4

i=9

Repeat the loop with i=9, and j=m-1=5  Finally, match found.

THE KNUTH-MORRIS-PRATT’S ALGORITHM
Knuth-Morris-Pratt’s (KMP) algorithm compares the pattern to the
text in left-to-right, but shifts the pattern more intelligently than
the brute-force algorithm.

When a mismatch occurs, what is the most we can shift the pattern
so as to avoid redundant comparisons?

Answer: the largest prefix of P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing
here

E

X

A

M

P

L

E

A B C A B C D A B A B C D A B C D A B D E

A B C D A B D

Text:

Pattern:

LPS Table for the above Pattern is:

0 0 0 0 1 2 0

0 1 2 3 4 5 6

LPS:

 Pattern found at Index: 15 in the Text

What should you do now?

What should you do now?

What should you do now?

• Trie is a tree like data structure used to

store collection of strings. Efficient in

retrieval.

• A trie searches a string in O(m) time

complexity, where m is the length of

the string.

• In a trie, every node except the root

stores a character value.

• All the children of a node are

alphabetically ordered. If any two strings

have a common prefix then they will

have the same ancestors.

Tries: Efficient pattern matching

• We can model the set S (strings) as a rooted

tree T in such a way, that each path from the

root of T to any of its nodes, corresponds to

a prefix of at least one string of S.

Standard Trie of all Suffixes: “banana\0”

https://www.geeksforgeeks.org/

• A Suffix Tree for a given text is a compressed trie for all suffixes of the given

text.

• If we join chains of single nodes, we get the following compressed trie, which

is the Suffix Tree for given text “banana\0”

Suffix Tree

THANK YOU!

Next Class: Graph Algorithms…

