N\YIZANYIANYIANYIANTYIANTY I ANY S AN

ZANYZANYZANYZANYZANYZANV/R
\YZANYZANYZANYZANYZA\Y/7 A\

ZANYZANYZANYZANYZANY/ANY/A\Y/
\YZANYZANYZANYZANYZANYZANYZAN

JANVIANVIANVIANVIANVIANVIANYS

(S F211: DATA STRUCTURES & ALGORITHMS
(20 SEMESTER 2024-25) |
PATTERN MATCHING ALGORITHMS

BITS-Pilani Hyderabad Campus

PATTERN MATCHING: WRHAT 15 & WHY?

- EEE EEE BN EEE BN EEE EEE BN EEE EEE EEE BEE BEE EEE BEE BEE BEE BEE BEE BEE BEE BEE BEE BEE BEE BEE GEE BEE BEE BEE BEE GEE BEE BEE BEE BEE GEE BEE BEn BEE BEE BEE BEE BEE BEE BEE BEE BEm BEE EEE B B Ry,

," Pattern matching is a programming technique used to check whether a given sequence of data (such \

as a string, or a list) follows a specific pattern.

Searching: Imagine you are using ctrl+F in browser or a document to find out all occurrences of a
word “climate” in a long document.

Behind the scene, either Boyer- Moore or KMP might be working.
DNA Sequence = "ACGTTATGCGTACGATGCGATACG" DNA Pattern = "ATGCG" = [5, 15]

Antivirus tools (Norton, McAfee, Avast) looking for presence of malicious signatures in an infected file.

File content: "90906A2B68576133FFD26A2B68576190" Pattern = "6A2B685761" > A [4,20]

Email spam: Congratulations! You have been selected as the lucky winner of our INR 3.0 crores Mega
Prize. To claim your reward, please send us your full name, address, and banking details immediately.

T S — — — - - - - S S - S S S S —— —— —— "

Ecommerce: “red running shoes” = “Nike red running shoes for Men” (Basic text search), “red runing
shoes” = “Nike red running shoes” (Fuzzy matching), “shoes for jogging” = “running shoes”, “sports /
‘shoes” (Semantic search). e

S o e e e e e o o e e e S EEm R B R B EE EEm M EEm EEm R REm B R SEm B S REm M Mmm Emm M Smm Emm S Emm R S mm R S Emm M G Emm e e

\

STRING PROCESSING

Algorithm BruteForceMatch(T, P):

* A common pr0b|em in text editing, D NA Input: Strings T (text) with n characters and P (pattern) with m characters
Sequence anaIySiS, and Web CraWI | ng: 011;1,::; itizindgszlszi;i E)l}e;lrst substring of T matching P, or an indication
flndlng StringS Inside other StringS_ for i < 0 to n—m {for each candidate index in 7} do

j<0

while (j < mand T[i+ j| = P[j]) do

« P="CGTAAACTGCTTTAATCAAACGC” Je it

. i if j = m then
« S ="http://www.wiley.com return i

return “There is no substring of 7 matching P.”

* Whether “TTTAA" is a substring of the above AR REEEEEEEE RS
seqguence? L 23 45 6

[afbfacfa]b

.
[albfacfa]b]

O((n-m+1)m) = O(nm) ODnBnDn

10
[afbfacfalb]

11 comparisons

722 23 24 25 26 27

[aTeTaTcTaTe]

ACM, 1977

A Fast String
Searching Algorithm

'BOYER-MOORE ALGORITHM i .

J Strother Moore
Xerox Palo Alto Research Center

* Efficient string-searching algorithms used in pattern matching, especially when the pattern is
relatively short compared to the text

* Looking-glass heuristic: Right to left. Purpose is to find mismatches early.

* Character-jump (Bad character) heuristic: Shift pattern smartly. Purpose is to avoid unnecessary
comparisons or skips many comparisions.

E{'a pla|t|t|e|r|n mla|t|c|h|li|n]|g all|glo|r|i|[t|h|{m]|}
X :
N 1 3 5 111098 7 |
M:rlthm rii|t|h|m riir|t|h|m rithm:
| |
E: \2/ '\ s M '\ M
£\ riilt|{h|m riilt|h|m riilt|h|m]

|THE BOYER-MOORE ALGORITHM CONTINUED...

—________________\

/ Algorlihm BoyerMooreMatch \

L < lastOccurenceFunction(P, S)
i< m-1
j < m-1
repeat
if (T[i] == P{j])
if |==0
return i { match at i }
else
i<—i-1
j<i-1
else
{ character-jump }
I « L[T[i]]
i<—i+tm-min(j, 1 +1)
< m-1
\ until i >n-1
~_ return -1 { no match } ’

o e o o o o o D = = == P

- e = e e e e e e —
e e e e o o e o o EE o Em Em Em o

T="BITSPILANI"

T:
P:

P="PILANI" Create a table showing the
| | rightmost occurrence of each
n=10 m=6 character in the pattern (L):
I A I] P I L A [N
0 |1 3 5 1o |5 |2 |3 |4
Run of the algorithm: i=4 i=5 =0
o= i
1 I 1
B |1 [T |5 i(P): L A N
P |l L |A : : L
=4 =5

I=L[T[4]]=L[P]=0 > i = i +m — min(j,1+I) = 4+6-min(4,1+0)= 9

Repeat the loop with i=9, and j=m-1=5 - Finally, match found.

THE KNUTH-MORRIS-PRATT'S ALGORITHM

Knuth-Morris-Pratt’s (KMP) algorithm compares the pattern to the
text in , but shifts the pattern more intelligently than
the brute-force algorithm.

When a mismatch occurs, what is the we can shift the pattern
so as to avoid redundant comparisons?

Answer: the largest prefix of P[0..j] that is a suffix of P[1..j]

KMP-MATCHER (T, P)

1. n =« length [T]

2. m =« length [P]

3. M« COMPUTE-PREFIX-FUNCTION (P)

4. g <« @ S numbers of characters matched

5. for 1 «+ 1 to n ff scan 5 from left to right

6. do while g > 8 and P [g + 1] # T [i]

7. do q = N [q] S/ next character does not match
8. It P [g + 1] = T [i]

9. then g <« g + 1 S next character matches

1. If g = m JY dis all of p matched?

11. then print "Pattern occurs with shift™ 1 - m
12. g = N [q] /4 look for the next match

I Resume
comparing
here

mr T > XM

Example for creating KMP Algorithm's LPS Table (Prefix Table)
Consider the following Pattern

5 7 5 B

I 2 3 4 :
Pattern : |A|B|C|D|A|B|D

Let us define LPS[] table with size 7 which is equal to length of the Pattern
0 1 2 3 4 5 &

s | LT 1T

Step 1 - Define variables | & j. Seti =0, j = 1 and LPS[0] = 0.

2 3 4 5 &

esjiof [[T [T []
i=0andj=1

Step 2 - Campare Pattern[i] with Pattern[j] ===> A with B.
Since both are not matching and also “i = 0" we need to set LPS[j] = 0 and
increment *j" value by one.

4

i 1 F 3 4 5]
es(ofof [[[1]
i=0andj=2

Step 3 - Campare Pattern[i] with Pattern[j] ===> A with C.
Since both are not matching and also “i = 0", we need to set LPS[j] = 0 and
increment *j’ value by one.
1 6

0 1 2 3 =
tps(oJofol T T T]

i=0andj=3

Step 4 - Campare Pattern[i] with Pattern[j] ===> A with D.
Since both are not matching and also "i = 0", we need to set LPS[j] = 0 and
increment *j’ value by one.

5 &

b1 2 3 4
Lps{ojofofo| [| |
i=0andj=4

Step 5 - Campare Pattern[i] with Pattern[j] ===> A with A.
Since both are matching set LPS[j] = i+1 and increment both i & j value by one.

.

0 1 2 3 5 &

LPS[{0{0|0]0J1

i=landj=>5

Step 6 - Campare Pattern[i] with Pattern[j] ===> B with B.
Since both are matching set LPS[j] = i+1 and increment both i & j value by one.

0 1 2 3 4 5 &

LPS|0[0f0]0f1]2
i=2andj=6

Step 7 - Campare Pattern[i] with Pattern[j] ===> C with D.
Since both are not matching and i =0, we need to set i = LPS[i-1]
===> | = LPS[2-1] = LPS[1] = 0.

0 1 F.

Lps[oJoJolo[1]2
i=0andj=6

B
LA
i

Step 8 - Campare Pattern[i] with Pattern[j] ===> A with D.
Since both are not matching and also i = 0, we need to set LPS[j] = 0 and
increment *j’ value by one.
0 1 2 3 4 5 6

LPS{0[0[0[0f1]2]0

Here LPS[] is filled with all values so we stop the process. The final LPS[]
table is as follows...

Text: |A|[B|C| |A|B|C|D|A|B| |A|lB|C|D|A|B|C|D|A|B|D]E ?p,\9°
Pattern: | 4 | g ciplalB D \k‘h
LPS TCI b|e for The Gbove Pq’r’re rn is: Step 3 - Since LPS value is ‘2’ no need to compare Pattern[0] & Pattern[1] values
0 1 2 3 4 5 6

text [A[B[C] [A[B[C[D[AIBIMAIBIC[D[A[B[C[D[A[B]D]E]

LPS: | O o) 0 o) 1 2 0

Pattern

Step 1 - Start comparing first character of Pattern with first character of Text from left
to right

What should you do now?

text [A|BJCIA]B[CIDJA[B] JA[BIC][DJA]B]CIDJA[B[DJE

0 1 c & Step 4 - Compare Pattern[0] with next character in Text.
Here mismatch occured at Pattern[3], so we need to consider LPS[2] value. Since LPS[2] AT TT—m
value is ‘0" we must compare first character in Pattern with next character in Text. Pattern AI BICI DIAI B.
Step 2 - Start comparing first character of Pattern with next character of Text. What should you do now?
Text A B C A B C D A B.A B C D A B C D A B D E Step 5 - Compare Pattern[2] with mismatched character in Text.

0 1 2 3 “ 5 6

Pattern A[B[C[D]A[BIB] tex [A[B|C| [A[B[CI[D|A[B| [A[B[C|D|AIBIC|D|A|BIDIE|

. ? 3 4 5 6
A|B|C/D|A|B|D|

Pattern

‘What should you do now?

I |
I I
I I
I |
I I
I |
I |
I I
I |
I |
I I
I |
I |
I I
I I
I I
I I
| 1 2 3 4 5 |
PetternATBICHN A[B[D rext [A]BIC] TATBICID]ATB] JATBICIDIATBIDIATEIOIE] |

I
: |
, I
, I
, I
, I
, I
, I
, I
| I
| I
| I
| I
| I
: = Pattern found at Index: 15 in the Text :
I I

Tries: Efficient pattern matching

Trie is a tree like data structure used to
store collection of strings. Efficient in
retrieval.

A trie searches a string in O(m) time

complexity, where m is the length of
the string.

In a trie, every node except the root
stores a character value.
All the children of a node are
alphabetically ordered. If any two strings
have a common prefix then they will
have the same ancestors.

 We can model the set S (strings) as a rooted
tree T in such a way, that each path from the
root of T to any of its nodes, corresponds to
a prefix of at least one string of S.

Standard Trie of all Suffixes: “banana\0”

\O

\0

https://www.geeksforgeeks.org/

Suffix Tree -

« A Suffix Tree for a given text is a compressed trie for all suffixes of the given
text.

 If we join chains of single nodes, we get the following compressed trie, which
IS the Suffix Tree for given text “banana\0”

banana\0 \O

na

na\0

\O

na\0 \0

THANK YOU!

Next Class: Graph Algorithms...

