
CS F211: DATA STRUCTURES & ALGORITHMS
(2ND SEMESTER 2024-25)

Divide & Conquer, Dynamic Programming

Chittaranjan Hota, PhD

Senior Professor, Computer Sc.

BITS-Pilani Hyderabad Campus

hota[AT]hyderabad.bits-pilani.ac.in

"The Sepoy revolt at Meerut, 1857”

Divide-and conquer is a general algorithm
design paradigm:

- Divide: divide the input data S in two
disjoint subsets S1 and S2

- Recur: solve the sub-problems associated
with S1 and S2

- Conquer: combine the solutions for S1 and
S2 into a solution for S

The base case for the recursion are
subproblems of size 0 or 1

Merge-sort is a sorting algorithm based
on the divide-and-conquer paradigm

Like heap-sort

- It uses a comparator

- It has O(n log n) running time

Unlike heap-sort

- It does not use an auxiliary priority
queue

- It accesses data in a sequential
manner (suitable to sort data on a
disk)

ALGORITHM TECHNIQUES: DIVIDE-AND-CONQUER

DIVIDE AND CONQUER

-Distinguish between small and large
instances.

-Small instances solved differently than larger
instances.

-How did you solve your BITS F232 course
assignments?

-Solving a small: Min&max. of n<=2 elements

-n=0, no min and max

-n=1, min. and max is the single element

-n=2, if a<b, min = a & max=b, else min=b
&max = a.

Direct/ Simple Strategy

Let us see the same for a larger instance,

say 7, 3, 4, 5, 8, 1, 2, 9, 6.

7, 3, 4, 5, 8, 1, 2, 9, 6

c7, 3, 4, 5 8, 1, 2, 9, 6

divide

conquer

MERGE-SORT: DIVIDE AND CONQUER

Algorithm mergeSort (S, C)

Input: seq S with n elements, comparator C

Output: sequence S sorted according to C

if S.size() > 1{

(S1, S2)  partition (S, n/2);

mergeSort(S1, C);

mergeSort(S2, C);

S  merge(S1, S2);

}

Algorithm merge(A, B)

Input: sequences A and B with n/2 elements each

Output: sorted sequence of A  B

S  empty sequence

while A.empty()  B.empty()

if A.front() < B.front()

S.addBack(A.front()); A.eraseFront();

else

S.addBack(B.front()); B.eraseFront();

while A.empty()

S.addBack(A.front()); A.eraseFront();

while B.empty()

S.addBack(B.front()); B.eraseFront();

return S

Merging two sorted sequences, each with n/2
elements and implemented by means of a
doubly linked list, takes O(?) time.

EXECUTION EXAMPLE

[8, 3, 13, 6, 2, 14, 5, 9, 10, 1, 7, 12, 4]

[8, 3, 13, 6, 2, 14, 5] [9, 10, 1, 7, 12, 4]

[8, 3, 13, 6] [2, 14, 5]

[8, 3] [13, 6]

[8] [3] [13] [6]

[2, 14] [5]

[2] [14]

[9, 10, 1] [7, 12, 4]

[9, 10] [1]

[9] [10]

[7, 12] [4]

[7] [12]

CONTINUED….

[3, 8] [6, 13]

[3, 6, 8, 13]

[8] [3] [13] [6]

[2, 14]

[2, 5, 14]

[2, 3, 5, 6, 8, 13, 14]

[5]

[2] [14]

[9, 10]

[1, 9, 10]

[1]

[9] [10]

[7, 12]

[4, 7, 12]

[1, 4, 7, 9, 10,12]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13,14]

[4]

[7] [12]

ANALYSIS OF MERGE-SORT

The height h is O(log n)

- at each recursive call we
divide into half the sequence

The overall amount of work done
at the nodes of depth i is O(n)

- we partition and merge 2i

sequences of size n/2i

- we make 2i+1 recursive calls

Thus, the total running time of
merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

RECURRENCE EQUATION ANALYSIS

The conquer step of merge-sort consists of merging two sorted sequences, each with n/2
elements and implemented by means of a doubly linked list, takes at most bn steps, for some
constant b.

Likewise, the base case (n < 2) will take at most b steps.

Therefore, if we let T(n) denote the running time of merge-sort:

We can therefore analyze the running time of merge-sort by finding a closed form solution to
the above equation.

- That is, a solution that has T(n) only on the left-hand side.










2if)2/(2

2if
)(

nbnnT

nb
nT

SOLUTION TO RECURRENCE RELATION

depth T’s size

0 1 n

1 2 n/2

i 2i n/2i

… … …

time

bn

bn

bn

…

Total time = bn + bn log n

(last level plus all previous levels)

(Recursion Tree)

NONRECURSIVE MERGE SORT

[8] [3] [13] [6] [2] [14] [5] [9] [10] [1] [7] [12] [4]

[3, 8] [6, 13] [2, 14] [5, 9] [1, 10] [7, 12] [4]

[3, 6, 8, 13] [2, 5, 9, 14] [1, 7, 10, 12] [4]

[2, 3, 5, 6, 8, 9, 13, 14] [1, 4, 7, 10, 12]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14]

QUICK-SORT: DIVIDE AND CONQUER

Quick-sort is a randomized sorting
algorithm based on the divide-and-
conquer paradigm:

- Divide: pick a random element x
(called pivot) and partition S into

- L elements less than x

- E elements equal x

- G elements greater than x

- Recur: sort L and G

- Conquer: join L, E and G

x

x

L GE

x

PARTITION STEP

We partition an input sequence as
follows:

- We remove, in turn, each element y
from S and

- We insert y into L, E or G, depending
on the result of the comparison with the
pivot x

Each insertion and removal is at the
beginning or at the end of a sequence,
and hence takes O(1) time

Thus, the partition step of quick-sort takes
O(n) time

Algorithm partition(S, p)

Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G  empty sequences

x  S.erase(p)

while S.empty()

y  S.eraseFront()

if y < x

L.insertBack(y)

else if y = x

E.insertBack(y)

else { y > x }

G.insertBack(y)

return L, E, G

RUNNING TIME(WORST & BEST)

depth time

0 n

1 n - 1

… …

n - 1 1

(Worst case: Pivot with unique minimum or maximum

value that makes either L or G with ’n-1’ size and the

other with 0)

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

(Best/ expected case)

Good or

bad Pivot?

Good or bad Pivot?

QUICK SORT: RECURRENCE RELATION

Divide step: The time complexity of this step is equal to the time complexity of the

partition algorithm

= O(n).

Conquer step time complexity = Time complexity to sort left subarray recursively +

Time complexity to sort right subarray recursively

= T(i) + T(n - i - 1)

Combine step: This is a trivial step and there is no operation in the combine part of

quick sort. So time complexity of combine step

= O(1).

Recurrence relation of the quick sort:

•T(n) = c, if n = 1

•T(n) = T(i) + T(n - i - 1) + cn, if n > 1

Worst case: i = n-1 => O(n*n)

Best case: i = n/2 => O(nlogn)

BUCKET-SORT: LINEAR TIME SORTING

Let S be a sequence of n (key, element) entries with
keys in the range [0, N - 1]

Bucket-sort uses the keys as indices into an auxiliary
array B of sequences (buckets)

Phase 1: Empty sequence S by moving each entry
(k, o) into its bucket B[k]

Phase 2: For i  0, …, N - 1, move the entries of
bucket B[i] to the end of sequence S

Analysis:

- Phase 1 takes O(n) time

- Phase 2 takes O(n  N) time

Bucket-sort takes O(n  N) time  Best case (keys
are distributed evenly in each bucket)

Algorithm bucketSort(S, N)

Input sequence S of (key, element)
items with keys in the range [0, N - 1]

Output sequence S sorted by increasing
keys

B  array of N empty sequences

while (S.empty()) {

(k, o)  S.front();

S.eraseFront();

B[k].insertBack((k, o));

}

for i  0 to N – 1{

while (B[i].empty())

(k, o)  B[i].front();

B[i].eraseFront();

S.insertBack((k, o));

}

EXAMPLE OF BUCKET SORT

The values range from 0-25.

Divide the elements into smaller problems.

Sort these buckets individually.

Iterate over each and populate the final array.

The relative order of any two items with the

same key is preserved after the execution

of the algorithm Stable sort

https://studyalgorithms.com/

 A little bit of Divide and Conquer…

RADIX SORT: LINEAR TIME (LEXICOGRAPHIC SORT)

Source: http://www.btechsmartclass.com/

DYNAMIC PROGRAMMING (DP)
• Both Divide & Conquer (DC), Dynamic P

rogramming (DP) break a large proble

m into small sub-problems.

• What will you choose for these four: Bin

ary Search, Dijkstra’s Shortest Path, To

wers of Hanoi, Closest Pair of Points?

• Fibonacci sequence?

• Can you solve all problems that are sol

vable by recursion using Dynamic Progr

amming like Merge and Quick sort?

• Complexity improvement from Exponen

tial to Polynomial.

• 0/1 Knapsack?
Input: N = 3, W = 4, profit[] = {1, 2, 3}, weight[] = {4, 5, 1}

Output: ?

EXAMPLE

RECAP: DYNAMIC PROGRAMMING
• A technique for solving a complex problem by first

breaking into a collection of simpler sub-problems,
solving each sub-problem just once, and then storing
their solutions to avoid repetitive computations.

• The sub-problems are optimized to optimize the
overall solution is known as optimal substructure
property.

• break the complex one down into simpler subproblems.

• find the optimal solution to these sub-problems.

• store the results of subproblems (memoization).

• so that, reuse them when required.

• finally, calculate the result of the complex problem.

DIVIDE & CONQUER VS. DYNAMIC PROGRAMMING

Feature Divide and Conquer Dynamic Programming

Approach
Recursively breaks problems into

independent subproblems.

Solves overlapping subproblems

optimally, storing solutions to

avoid recomputation.

Subproblem Overlap
Subproblems are independent (no

overlap).

Subproblems

are overlapping (reused multiple

times).

Storage
Does not store solutions to

subproblems.

Stores solutions (memoization or

tabulation) for reuse.

Base Case
Relies on recursion until reaching a

base case.

Builds solutions iteratively or

recursively with stored states.

Examples
Merge Sort, QuickSort, Binary

Search.

Fibonacci (memoized), Knapsack,

Shortest Path (Floyd-Warshall).
•When to use what? Use D&C when subproblems are independent (e.g., sorting, searching). Use DP when

subproblems overlap and optimal substructure exists (e.g., optimization problems).

int fib(int n) {

if(n<0)

error;

if(n == 0)

return 0;

if(n == 1)

return 1;

sum = fib(n-1) + fib(n-2);

}

(Recursive approach: Complexity

2𝑛 for large ‘n’)

(Dynamic programming: Top down

approach with complexity O(n))

static int count = 0;

int fib(int n) {

If (memo[n]!= NULL)

return memo[n];

count++;

if(n<0)

error;

if(n == 0)

return 0;

if(n == 1)

return 1;

sum = fib(n-1) + fib(n-2);

memo[n] = sum;

}

int fib(int n)

{

int A[];

A[0] = 0, A[1] = 1;

for(i=2; i<=n; i++)

{

A[i]=A[i-1]+A[i-2];

}

return A[n];

}

(Dynamic programming: Bottom-up

approach)

FIBONACCI SERIES USING DYNAMIC PROGRAMMING

MATRIX CHAIN PRODUCT OR MATRIX CHAIN MULTIPLICATION
Given matrices: A: 10×30, B: 30×5, and C: 5×60, We want to fully parenthesize A × B × C to

minimize scalar multiplications.

Matrix dimensions array: P=[10, 30, 5, 60]

This means:

•A = P[0] × P[1] = 10 × 30

•B = P[1] × P[2] = 30 × 5

•C = P[2] × P[3] = 5 × 60

Goal:

Minimize the number of scalar multiplications for:

A×B×C

There are two ways to parenthesize:

1.?

2.?

Let us compute both:A×(B×C) 

B= 30X5, C=5X60  BXC = 30X60,  Scalar Multiplications: 30X5X60 = 9000

AX(BXC)  A=10X30, BXC=30X60  AX(BXC)=10X60  Scalar Multiplications: 10X30X60=18000

Total: 9000 + 18000 = 27000

(AXB)XC 

A=10X30, B=30X5  AXB = 10X5, Scalar multiplications: 10X30X5 =1500

(AXB)XC  AXB = 10X5, C=5X60  (AXB)XC = 10X60  Scalar Multiplications: 10X5X60 = 3000

Total: 1500 + 3000 = 4500What is the best way?

MATRIX CHAIN PRODUCT USING DP
A (5×4), B (4×6), C (6×2), D (2×7)

p[] = {5, 4, 6, 2, 7}

Step 1: Initialize the DP table

Define m[i][j] as the minimum number of multiplications

needed to compute matrices from i to j.

For any i == j, m[i][i] = 0 since a single matrix doesn’t

need multiplication.

Fill the table for increasing chain lengths:

Step 2: Chain length L = 2 (two matrices)

m[1][2] → A * B

Cost = 5×4×6 = 120

m[2][3] → B * C

Cost = 4×6×2 = 48

m[3][4] → C * D Cost = 6×2×7 = 84
Step 3: Chain length L = 3 (three matrices)

m[1][3] → A * B * C

Try all splits:

k = 1: (A)*(BC) → 5×4×2 + m[2][3] = 40 + 48 = 88

k = 2: (AB)*C → 5×6×2 + m[1][2] = 60 + 120 = 180

min = 88, so m[1][3] = 88

m[2][4] → B * C * D

Try all splits:

k = 2: (B)*(CD) → 4×6×7 + m[3][4] = 168 + 84 = 252

k = 3: (BC)*D → 4×2×7 + m[2][3] = 56 + 48 = 104

min = 104, so m[2][4] = 104

Step 4: Chain length L = 4 (all four matrices)

m[1][4] → A * B * C * D

Try all splits:

k = 1: (A)*(BCD) → 5×4×7 + m[2][4] = 140 +

104 = 244

k = 2: (AB)*(CD) → 5×6×7 + m[1][2] + m[3][4] =

210 + 120 + 84 = 414

k = 3: (ABC)*D → 5×2×7 + m[1][3] = 70 + 88 =

158

min = 158, so m[1][4] = 158

MCP: DP USING BOTTOM UP (TABULAR METHOD)

A5X4.B4X6.C6X2.D2X7 :
0

1

2

3

0 1 2 3

0

0

0

0

A5X4.B4X6 =5X4X6=120

B4X6.C6X2 = 4X6X2=48

C6X2.D2X7 = 6X2X7=84

0

1

2

3

0 1 2 3

0

0

0

0

120

48

84

A5X4.B4X6.C6X2 = min((A.B)C, A(B.C))

= min(120+5x6x2, 5x4x2+48)

= min(180, 88) = 88

B4X6.C6X2 .D2x7 = min((B.C)D, B(C.D))

= min(48+4x2x7, 4x6x7+84)

= min(104, 252) = 104

0

1

2

3

0 1 2 3

0

0

0

0

120

48

84

88

104

A5X4.B4X6.C6X2 .D2x7 = min((A.B.C)D, (A.B)(C.D), A.(B.C.D))

= min(88+5x2x7, 120+ 5X6X7 +84, 5X4X7 + 104)

= min(158, 414, 244) = 158

0

1

2

3

0 1 2 3

0

0

0

0

120

48

84

88

104

158

}{min 11,1,, 


 jkijkki
jki

ji dddNNN

LONGEST COMMON SUBSEQUENCE USING MEMOIZATION
- Finding the longest sequence that appears in the same relative order (but not necessarily contiguously)
in two strings. Ex: X = “ACADB”, Y = “CBDA”. Applications: Version control, Plagiarism check, DNA seq.

for each (i, j) {
If (X[i-1] == Y[j-1])

memo[i][j] = 1 + memo[i-1][j-1];
else

memo[i][j] = max(memo[i-1][j], memo[i][j-1])
}

T

o

p

d

o

w

n
LCS: CA

THANK YOU!

Next class: Pattern Matching Algorithms

