

CS F211: DATA STRUCTURES & ALGORITHMS (2ND SEMESTER 2024-25) Divide & Conquer, Dynamic Programming

Chittaranjan Hota, PhD Senior Professor, Computer Sc. BITS-Pilani Hyderabad Campus hota[AT]hyderabad.bits-pilani.ac.in

ALGORITHM TECHNIQUES: DIVIDE-AND-CONQUER

Divide-and conquer is a general algorithm design paradigm:

- Divide: divide the input data **S** in two disjoint subsets **S**₁ and **S**₂
- Recur: solve the sub-problems associated with S₁ and S₂
- Conquer: combine the solutions for S₁ and
 S₂ into a solution for S

The base case for the recursion are subproblems of size 0 or 1

Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm

Like heap-sort

- It uses a comparator
- It has **O**(*n* log *n*) running time

Unlike heap-sort

- It does not use an auxiliary priority queue
- It accesses data in a sequential manner (suitable to sort data on a disk)

DIVIDE AND CONQUER

-Distinguish between small and large instances.

-Small instances solved differently than larger instances.

-How did you solve your BITS F232 course assignments?

-Solving a small: <u>Min&max. of n<=2 elements</u>

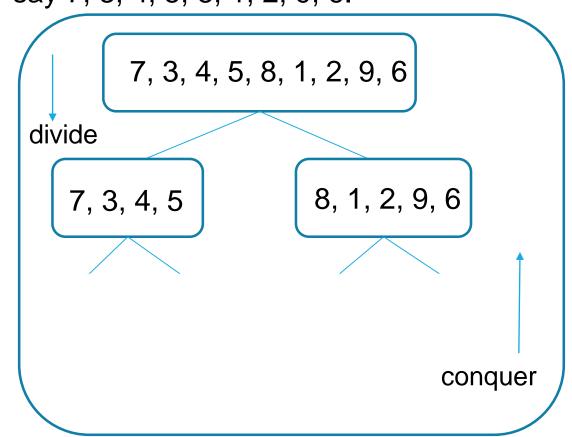
-n=0, no min and max

-n=1, min. and max is the single element

-n=2, if a<b, min = a & max=b, else min=b &max = a.

Direct/ Simple Strategy

Let us see the same for a larger instance, say 7, 3, 4, 5, 8, 1, 2, 9, 6.



MERGE-SORT: DIVIDE AND CONQUER

```
Algorithm mergeSort (S, C)

Input: seq S with n elements, comparator C

Output: sequence S sorted according to C

if S.size() > 1{

(S_1, S_2) \leftarrow partition (S, n/2);

mergeSort(S_1, C);

mergeSort(S_2, C);

S \leftarrow merge(S_1, S_2);

}
```

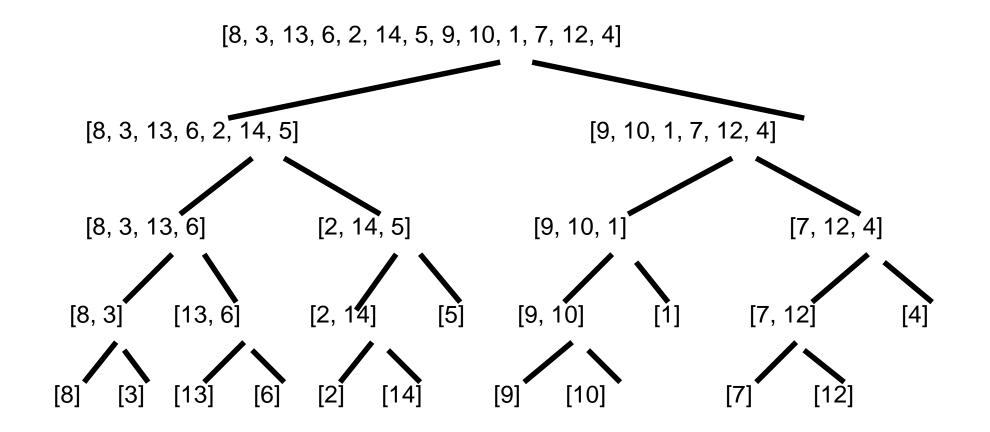
Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes **O**(**?**) time.

Algorithm merge(A, B)

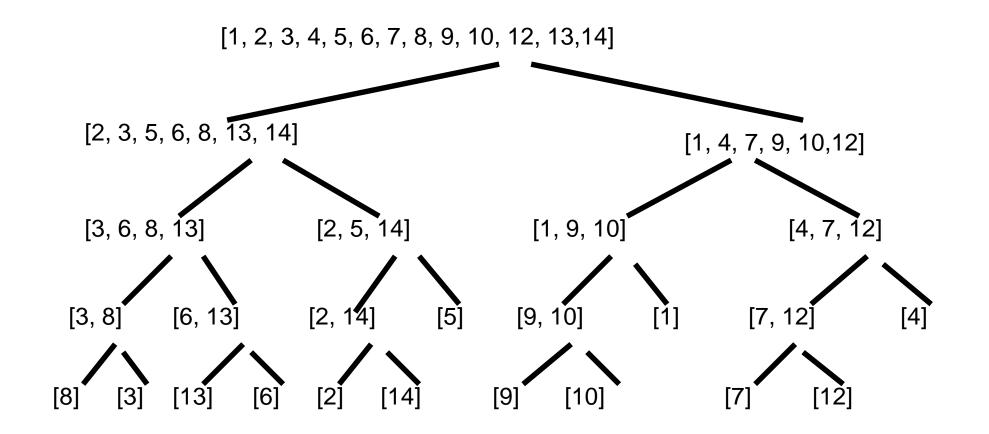
Input: sequences A and B with n/2 elements each Output: sorted sequence of $A \cup B$

 $S \leftarrow empty sequence$ while $\neg A.empty() \land \neg B.empty()$ if A.front() < B.front() S.addBack(A.front()); A.eraseFront(); else S.addBack(B.front()); B.eraseFront(); while –A.empty() S.addBack(A.front()); A.eraseFront(); while ¬B.empty() S.addBack(B.front()); B.eraseFront(); return S

EXECUTION EXAMPLE



CONTINUED....



ANALYSIS OF MERGE-SORT

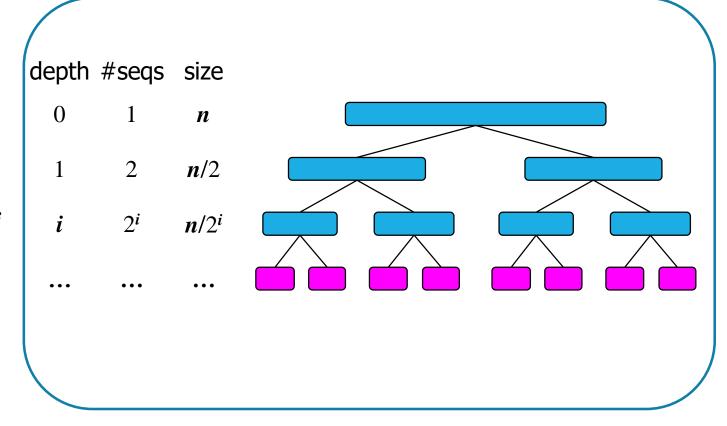
The height **h** is **O**(log **n**)

- at each recursive call we divide into half the sequence

The overall amount of work done at the nodes of depth *i* is **O**(*n*)

- we partition and merge 2^i sequences of size $n/2^i$
- we make 2^{i+1} recursive calls

Thus, the total running time of merge-sort is $O(n \log n)$



RECURRENCE EQUATION ANALYSIS

The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.

Likewise, the base case (n < 2) will take at most b steps.

Therefore, if we let T(n) denote the running time of merge-sort:

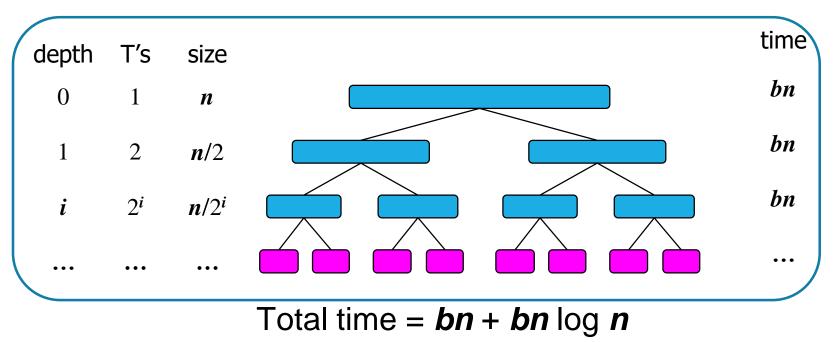
$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.

- That is, a solution that has T(n) only on the left-hand side.

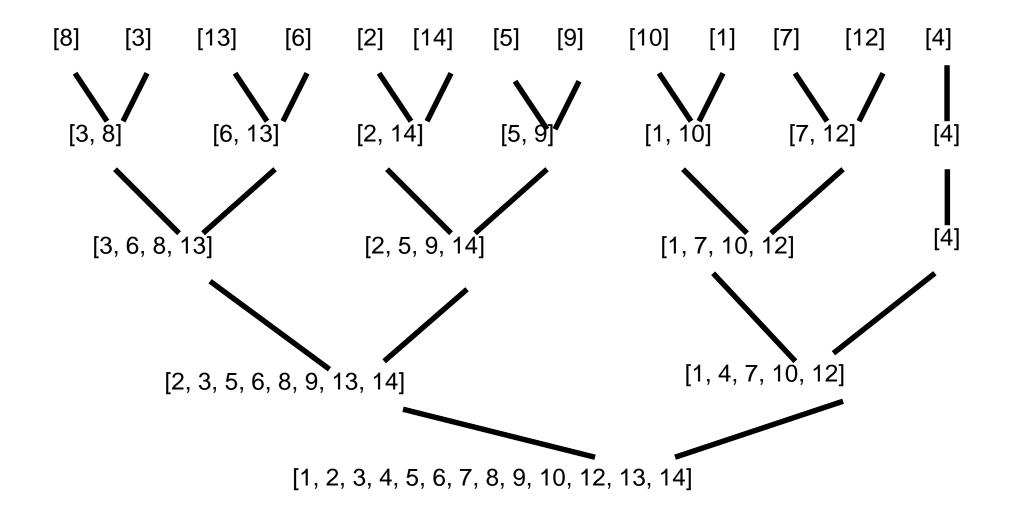
SOLUTION TO RECURRENCE RELATION

(Recursion Tree)



(last level plus all previous levels)

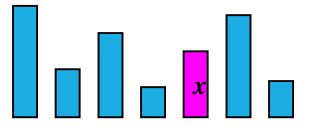
NONRECURSIVE MERGE SORT

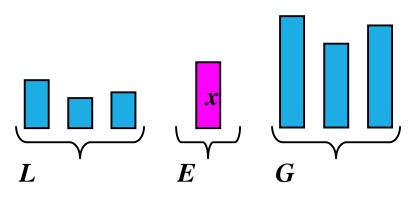


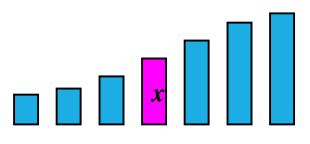
QUICK-SORT: DIVIDE AND CONQUER

Quick-sort is a randomized sorting algorithm based on the divide-andconquer paradigm:

- Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
- Recur: sort L and G
- Conquer: join L, E and G







PARTITION STEP

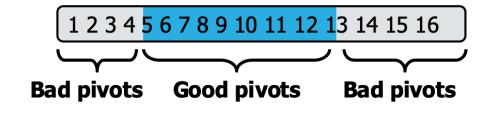
We partition an input sequence as follows:

- We remove, in turn, each element y from S and
- We insert y into L, E or G, depending on the result of the comparison with the pivot x

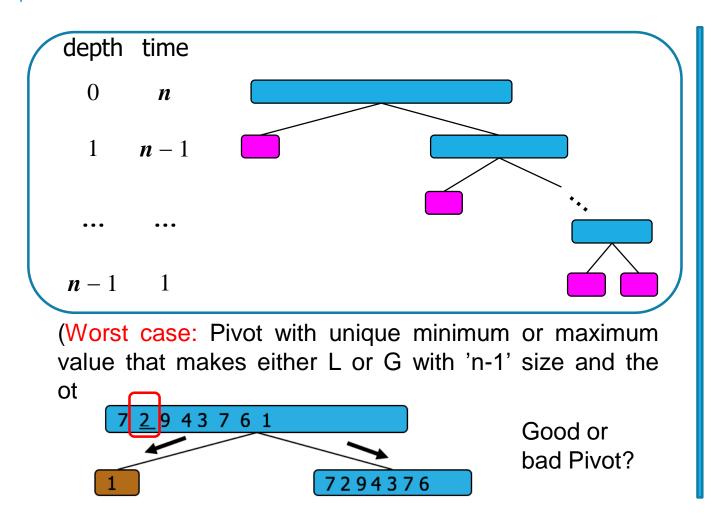
Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time

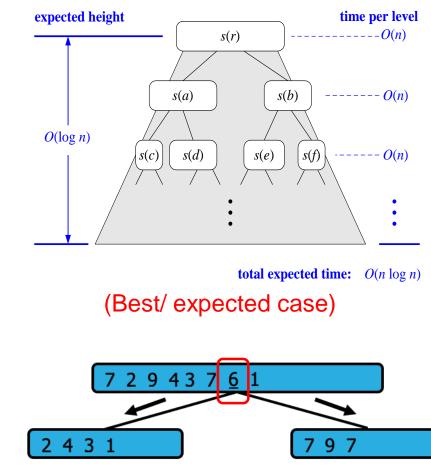
Thus, the partition step of quick-sort takes O(n) time

Algorithm *partition*(*S*, *p*) **Input** sequence **S**, position **p** of pivot Output subsequences *L*, *E*, *G* of the elements of **S** less than, equal to, or greater than the pivot, resp. *L*, *E*, *G* ← empty sequences $x \leftarrow S.erase(p)$ while ¬S.empty() *y* ← *S.eraseFront*() if y < xL.insertBack(y) else if y = xE.insertBack(y) else $\{ y > x \}$ G.insertBack(y) return L, E, G



RUNNING TIME(WORST & BEST)





Good or bad Pivot?

QUICK SORT: RECURRENCE RELATION

Divide step: The time complexity of this step is equal to the time complexity of the partition algorithm = O(n).

Conquer step time complexity = Time complexity to sort left subarray recursively + Time complexity to sort right subarray recursively = T(i) + T(n - i - 1)

Combine step: This is a trivial step and there is no operation in the combine part of quick sort. So time complexity of combine step = O(1).

Recurrence relation of the quick sort: •T(n) = c, if n = 1 •T(n) = T(i) + T(n - i - 1) + cn, if n > 1

Worst case: $i = n-1 => O(n^*n)$ Best case: i = n/2 => O(nlogn)

BUCKET-SORT: LINEAR TIME SORTING

```
Let S be a sequence of n (key, element) entries with keys in the range [0, N-1]
```

```
Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
```

```
Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k]
```

```
Phase 2: For i = 0, ..., N - 1, move the entries of bucket B[i] to the end of sequence S
```

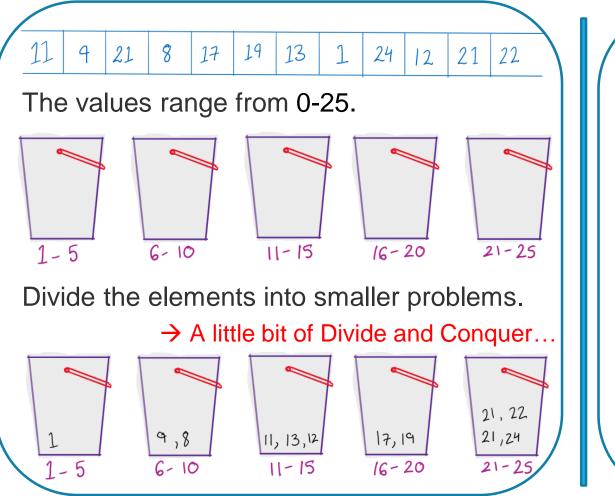
Analysis:

- Phase 1 takes O(n) time
- Phase 2 takes O(n + N) time

```
Bucket-sort takes O(n + N) time \rightarrow Best case (keys are distributed evenly in each bucket)
```

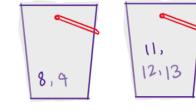
Algorithm *bucketSort*(*S*, *N*) Input sequence *S* of (key, element) items with keys in the range [0, N - 1]Output sequence S sorted by increasing keys $B \leftarrow \text{array of } N \text{ empty sequences}$ while $(\neg S.empty())$ { $(k, o) \leftarrow S.front();$ S.eraseFront(); B[k].insertBack((k, o)); for $i \leftarrow 0$ to N - 1while (¬*B*[*i*].empty()) $(k, o) \leftarrow B[i].front();$ *B*[*i*].*eraseFront*(); S.insertBack((k, o));

EXAMPLE OF BUCKET SORT



The relative order of any two items with the same key is preserved after the execution of the algorithm→ Stable sort

Iterate over each and populate the final array.



191

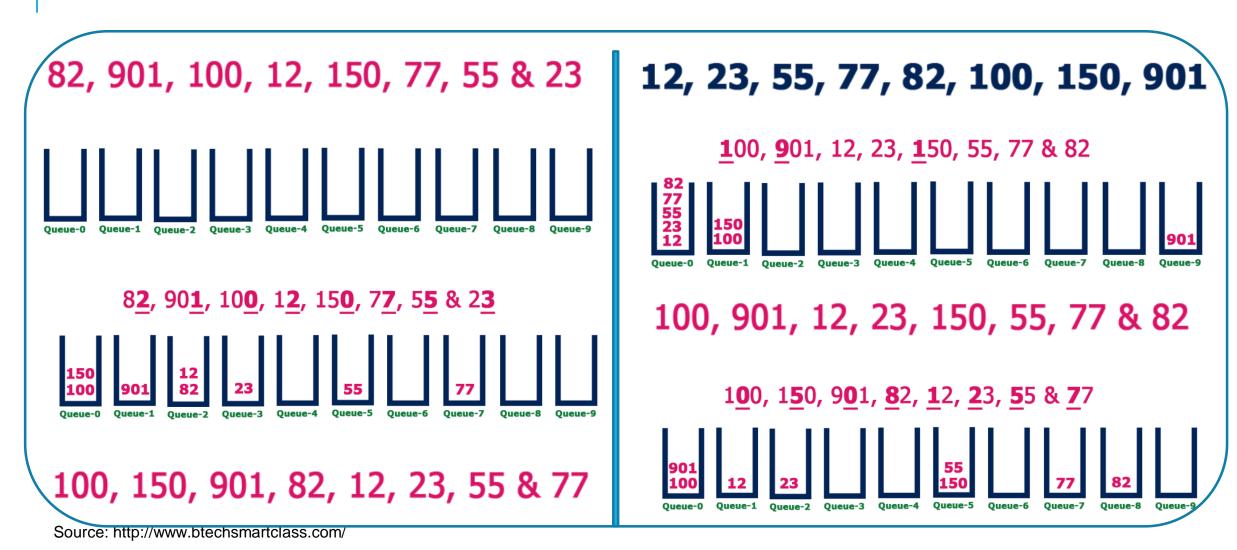
21, 22,

22, 24

https://studyalgorithms.com/

1

RADIX SORT: LINEAR TIME (LEXICOGRAPHIC SORT)



DYNAMIC PROGRAMMING (DP)

- Both Divide & Conquer (DC), Dynamic P rogramming (DP) break a large proble m into small sub-problems.
- What will you choose for these four: Bin ary Search, Dijkstra's Shortest Path, To wers of Hanoi, Closest Pair of Points?
- Fibonacci sequence?
- Can you solve all problems that are sol vable by recursion using Dynamic Progr amming like Merge and Quick sort?
- Complexity improvement from Exponen tial to Polynomial.

```
    0/1 Knapsack?
    Input: N = 3, W = 4, profit[] = {1, 2, 3}, weight[] = {4, 5, 1}
    Output: ?
```

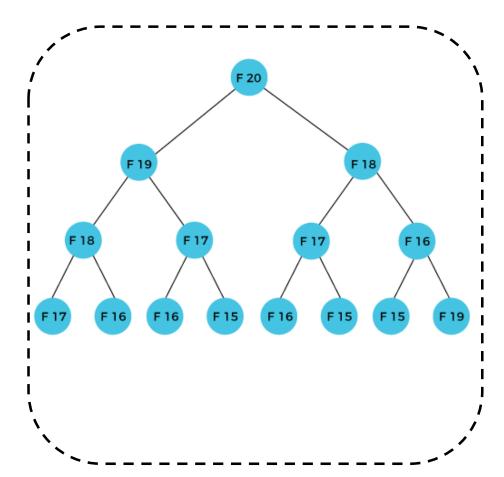

EXAMPLE

```
#include <iostream>
 1
 2 #include <vector>
 3 using namespace std;
 4 int fibonacci(vector <int> &dp, int n)
 5 - {
 6
            if(n == 0)
                    return 0;
 8
            if(dp[n] != 0)
 9
                    return dp[n];
            dp[n] = fibonacci(dp, n - 1) + fibonacci(dp, n - 2);
10
            return dp[n];
11
12 }
13 - int main() {
            int n;
14
15
            cin >> n;
            vector <int> dp(n, 0);
16
            dp[1] = 1;
17
            cout << fibonacci(dp, n - 1) << endl;</pre>
18
19 }
```

RECAP: DYNAMIC PROGRAMMING

- A technique for solving a complex problem by first breaking into a collection of simpler sub-problems, solving each sub-problem just once, and then storing their solutions to avoid repetitive computations.
- The sub-problems are optimized to optimize the overall solution is known as optimal substructure property.

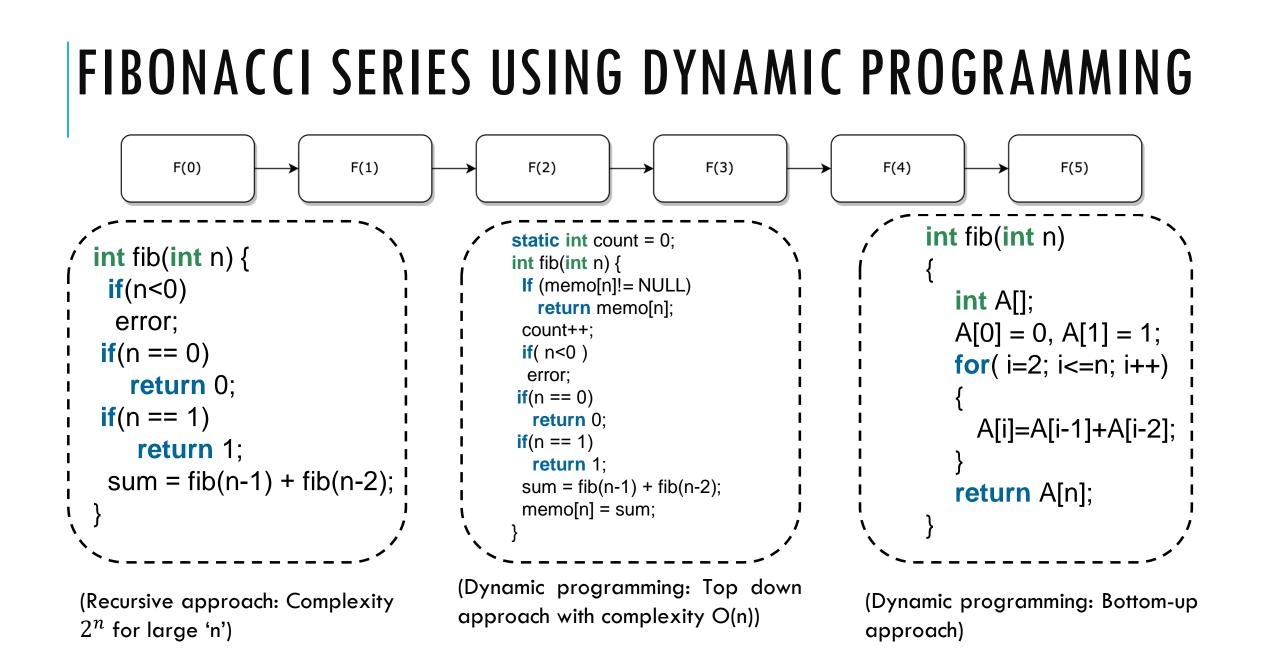
break the complex one down into simpler subproblems.
find the optimal solution to these sub-problems.
store the results of subproblems (memoization).
so that, reuse them when required.
finally, calculate the result of the complex problem.



DIVIDE & CONQUER VS. DYNAMIC PROGRAMMING

Feature	Divide and Conquer	Dynamic Programming
Approach	Recursively breaks problems into independent subproblems.	Solves overlapping subproblems optimally, storing solutions to avoid recomputation.
Subproblem Overlap	Subproblems are independent (no overlap).	Subproblems are overlapping (reused multiple times).
Storage	Does not store solutions to subproblems.	Stores solutions (memoization or tabulation) for reuse.
Base Case	Relies on recursion until reaching a base case.	Builds solutions iteratively or recursively with stored states.

•When to use what? Use D&C when subproblems are independent (e.g., sorting, searching). Use DP when subproblems overlap and optimal substructure exists (e.g., optimization problems).



MATRIX CHAIN PRODUCT OR MATRIX CHAIN MULTIPLICATION

Given matrices: A: 10×30, B: 30×5, and C: 5×60, We want to fully parenthesize A × B × C to minimize scalar multiplications. Goal: Matrix dimensions array: P=[10, 30, 5, 60]

This means:

$$\bullet A = P[0] \times P[1] = 10 \times 30$$

•B = P[1] × P[2] =
$$30 \times 5$$

 $\bullet C = P[2] \times P[3] = 5 \times 60$

 $Ax(BxC) \rightarrow |$ Total: 9000 + 18000 = 27000

Minimize the number of scalar multiplications for: AxBxC There are two ways to parenthesize:

A 0

B= 30X5, C=5X60 \rightarrow BXC = 30X60, \rightarrow Scalar Multiplications: 30X5X60 = 9000

 $AX(BXC) \rightarrow A=10X30, BXC=30X60 \rightarrow AX(BXC)=10X60 \rightarrow Scalar Multiplications: 10X30X60=18000$

 $(AXB)XC \rightarrow$

What is the best way?

Total: 1500 + 3000 = 4500

A=10X30, B=30X5 \rightarrow AXB = 10X5, Scalar multiplications: 10X30X5 =1500

 $(AXB)XC \rightarrow AXB = 10X5, C=5X60 \rightarrow (AXB)XC = 10X60 \rightarrow Scalar Multiplications: 10X5X60 = 3000$

MATRIX CHAIN PRODUCT USING DP

p[] = {5, 4, 6, 2, 7}

Step 1: Initialize the DP table Define m[i][j] as the minimum number of multiplications needed to compute matrices from i to j. For any i == j, m[i][i] = 0 since a single matrix doesn't need multiplication. Fill the table for increasing chain lengths: Step 3: Chain length L = 3 (three matrices) $m[1][3] \rightarrow A * B * C$ Try all splits: $k = 1: (A)^*(BC) \rightarrow 5 \times 4 \times 2 + m[2][3] = 40 + 48 = 88$ $k = 2: (AB)^*C \rightarrow 5 \times 6 \times 2 + m[1][2] = 60 + 120 = 180$ min = 88, so m[1][3] = 88 $m[2][4] \rightarrow B * C * D$ Try all splits: $k = 2: (B)^*(CD) \rightarrow 4 \times 6 \times 7 + m[3][4] = 168 + 84 = 252$ $k = 3: (BC)^*D \rightarrow 4 \times 2 \times 7 + m[2][3] = 56 + 48 = 104$ min = 104, so m[2][4] = 104

A (5×4), B (4×6), C (6×2), D (2×7) Step 2: Chain length L = 2 (two matrices) $m[1][2] \rightarrow A * B$ $Cost = 5 \times 4 \times 6 = 120$ $m[2][3] \rightarrow B * C$ Cost = 4x6x2 = 48 $m[3][4] \rightarrow C * D$ $Cost = 6 \times 2 \times 7 = 84$ Step 4: Chain length L = 4 (all four matrices) $m[1][4] \rightarrow A * B * C * D$ Try all splits: $k = 1: (A)^*(BCD) \rightarrow 5 \times 4 \times 7 + m[2][4] = 140 +$ 104 = 244 $k = 2: (AB)^*(CD) \rightarrow 5 \times 6 \times 7 + m[1][2] + m[3][4] =$ 210 + 120 + 84 = 414 $k = 3: (ABC)*D \rightarrow 5 \times 2 \times 7 + m[1][3] = 70 + 88 =$

```
min = 158, so m[1][4] = 158
```

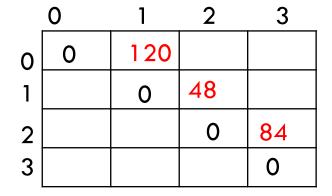
158

MCP: DP USING BOTTOM UP (TABULAR METHOD)

 $A_{5X4}.B_{4X6}.C_{6X2}.D_{2X7}:$

2 $A_{5X4}B_{4X6} = 5X4X6 = 120$ 0 $B_{4X6} \cdot C_{6X2} = 4X6X2 = 48$ 0 $C_{6x2}.D_{2x7} = 6X2X7 = 84$

0



 $A_{5X4}B_{4X6}C_{6X2} = min((A.B)C, A(B.C))$ $= \min(120+5x6x2, 5x4x2+48)$ $= \min(180, 88) = 88$

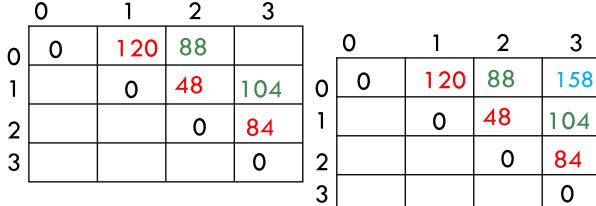
0

0

2

3

 $B_{4x6} \cdot C_{6x2} \cdot D_{2x7} = min((B.C)D, B(C.D))$ $= \min(48 + 4x2x7, 4x6x7 + 84)$ = min(104, 252) = 104

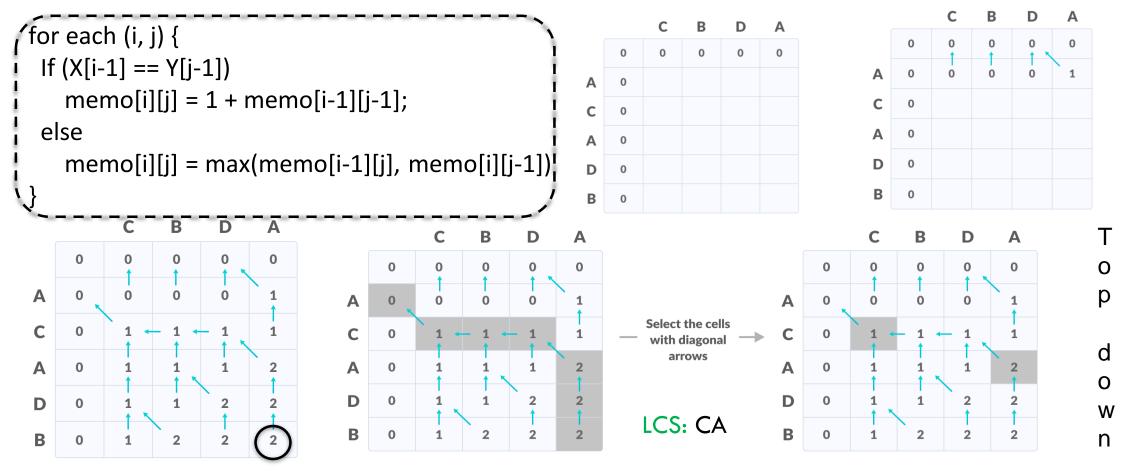


 $A_{5X4}B_{4X6}C_{6X2}D_{2x7} = min((A.B.C)D, (A.B)(C.D), A.(B.C.D))$ $= \min(88+5x2x7, 120+5X6X7+84, 5X4X7+104)$ = min(158, 414, 244) = 158

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

LONGEST COMMON SUBSEQUENCE USING MEMOIZATION

- Finding the longest sequence that appears in the same relative order (but not necessarily contiguously) in two strings. Ex: X = "ACADB", Y = "CBDA". Applications: Version control, Plagiarism check, DNA seq.



THANK YOU!

Next class: Pattern Matching Algorithms