





(IN426781)
A chemotherapeutic composition for treating malignant tumors and method for preparing the same



### **NEED**

Cancer therapies often suffer from limited drug delivery efficiency and severe side effects. A breakthrough in polymeric micelles promises to significantly enhance the targeted delivery of chemotherapeutic agents, reducing risks.

#### MARKET ANALYSIS

The global nanomedicine market is projected to grow at a CAGR of 11.2% from 2023 to 2033, driven by increasing demand for targeted cancer therapies and drug delivery systems. (Source: MarketsandMarkets, 2023)

## **TECHNOLOGY OVERVIEW**

This invention encapsulates suberoylanilide hydroxamic acid (SAHA) in polymeric micelles made of PEG-PLGA copolymers. The micelles, sized 50-250nm, offer high encapsulation efficiency, ensuring targeted and efficient drug delivery to malignant tumors.

# **Target Industries**

1) Pharmaceutical companies focused on cancer treatments and advanced drug delivery systems. 2) Biotechnology firms specializing in polymeric micelles and nanomedicine. 3) Healthcare providers seeking targeted drug delivery solutions for oncology.

# **TECHNOLOGY KEY FEATURES**

1) High encapsulation efficiency (70-100%) of SAHA. 2) Micelles sized 50-250nm for optimal drug delivery. 3) Use of PEG-PLGA copolymers for stable micelle formation. 4) Improved targeting for cancer treatment.

## AT A GLANCE

 SDG 3 (Good Health and Well-being), SDG 9 (Industry, Innovation, and Infrastructure), SDG 12 (Responsible Consumption and Production)

### Read more here

Technology is available for licensing/ co-development.

Reach out to Prof. Deepak Chitkara, Coordinator, BITS Technology Enabling Centre,

BITS Pilani Contact Details: tec.bits@pilani.bits-pilani.ac.in, 91 1596-255913

