

GRANTED

(IN304798)

Temperature inducible promoter derived and modified from enterococcus faecium djl plasmid, and its use in e. coli for production of desired protein

NEED

The ability to produce large amounts of proteins efficiently is a significant challenge in biotechnology. What if there was a way to induce high-efficiency protein expression without expensive methods?

MARKET ANALYSIS

The global biotechnology market is projected to grow at a CAGR of 7.4%, reaching \$1.4 trillion by 2033, driven by advancements in protein production and gene therapy. (Source: Grand View Research, 2023)

TECHNOLOGY OVERVIEW

This technology introduces a temperature-inducible promoter isolated from Enterococcus faecium DJ 1. It enables controlled gene expression in E. coli, leading to efficient production of proteins or peptides in large quantities.

Target Industries

1) Biotechnology Companies focusing on recombinant protein production. 2) Pharmaceutical and Biopharma Industry developing therapeutic proteins. 3) Agricultural Biotechnology for peptide production in research or crop protection.

TECHNOLOGY KEY FEATURES

1) Temperature-inducible promoter for high-efficiency gene expression. 2) Works with E. coli, a widely used host for protein production. 3) Enables large-scale, cost-effective protein production. 4) Promoter derived from Enterococcus faecium DJ 1 for controlled expression.

AT A GLANCE

SDG 2 (Zero Hunger), SDG 3
 (Good Health and Well-being),
 SDG 9 (Industry, Innovation, and Infrastructure)

Read more here

Technology is available for licensing/ co-development.

Reach out to Prof. Deepak Chitkara, Coordinator, BITS Technology Enabling Centre,

BITS Pilani Contact Details: tec.bits@pilani.bits-pilani.ac.in, 91 1596-255913

