



વिज्ञान एवं प्रौद्योगिकी विभाग DEPARTMENT OF **SCIENCE & TECHNOLOGY**

PENDING

(IN202513007774) Integrated solar photovoltaic (PV) and parabolic trough grain fluidized bed dryer

NEED

Traditional drying systems often rely on energy-intensive methods, leading to higher costs and environmental impact. A solar-powered fluidized bed dryer addresses these issues, providing a sustainable drying solution for agricultural products.

TECHNOLOGY OVERVIEW

The solar-powered fluidized bed dryer integrates solar heating and backup air pre-heating for efficient grain drying. It uses a parabolic trough collector and a solar tracking system for optimal energy use, with precise control over temperature, air velocity, and moisture content.

MARKET ANALYSIS

The global market for solar energy in agriculture is expected to grow at a CAGR of 11.5% from 2023 to 2033 [Source: Grand View Research, 2023]. The growing demand for energy-efficient farming technologies drives adoption.

Target Industries

Renewable Energy, Agriculture, Industrial Equipment., Solar energy developers, grain processing companies, agricultural technology platforms, energy-efficient equipment manufacturers, system integrators in sustainable farming.

TECHNOLOGY KEY FEATURES

Solar energy-powered, adjustable parabolic trough collector, integrated pre-heaters, precise air velocity control, multiple nozzle shapes for improved efficiency. Reduces reliance on grid electricity and enhances drying performance.

AT A GLANCE

 SDG 7 (Affordable and Clean Energy), SDG 12 (Responsible Consumption and Production), SDG 13 (Climate Action)

Read more here

Technology is available for licensing/ co-development. Reach out to Prof. Deepak Chitkara, Coordinator, BITS Technology Enabling Centre, BITS Pilani Contact Details: tec.bits@pilani.bits-pilani.ac.in, 91 1596-255913

