



বিক্লাল एवं प्रौद्योगिकी विभाग DEPARTMENT OF SCIENCE & TECHNOLOGY

PENDING

(IN2O2411077016) A system and a method for heat-transfer analysis in a solar collector

Silver nanoparticle-

o , Titanium Alloy nanoparticle-

NEED

30% of solar thermal systems suffer performance losses due to undetected heat transfer inefficiencies, causing \$4B in lost energy annually. Industries urgently require smart solar collectors that monitor, predict, and optimize energy capture without manual calibration delays.

TECHNOLOGY OVERVIEW

This system integrates sensors within a solar collector to measure temperature, flow, and irradiance. A processor analyzes the data using a fractional derivative model with hybrid nanofluids, delivering highly accurate heat transfer and entropy values without external intervention or disruption to energy collection.

TECHNOLOGY KEY FEATURES

Embedded sensing, Maxwell hybrid nanofluid modeling, fractional derivative computation, real-time heat transfer profiling, integrated entropy analysis, solar-specific parameters like Nusselt and Sherwood numbers, auto-calibration, compatibility with parabolic trough collectors.

MARKET ANALYSIS

The global solar thermal market is projected to grow at 8.5% CAGR, reaching \$36.5 billion by 2033 (source: Market Research Future, 2024). India's solar thermal market is growing at 10.2% CAGR, fueled by industrial and residential demand (source: Mordor Intelligence, 2024).

Target Industries

Renewable Energy Infrastructure, Industrial Process Heating, Smart Building Solutions., Solar thermal system integrators, renewable energy analytics providers, R&D centers developing advanced solar materials and control systems.

AT A GLANCE

 SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation and Infrastructure),
 SDG 13 (Climate Action)

Read more here

Technology is available for licensing/ co-development. Reach out to Prof. Deepak Chitkara, Coordinator, BITS Technology Enabling Centre, BITS Pilani Contact Details: tec.bits@pilani.bits-pilani.ac.in, 91 1596-255913

