R.R. Mishra

Department Of Physics
 BITS Pilani

Mechanics, Oscillations and Waves (MEOW)

Major Division

1. Mechanics (R.R. Mishra)

$$
20 \text { ~ } 22 \text { Lectures }
$$

2. Oscillations \& Waves (D.D. Pant)

$$
20 \text { ~ } 22 \text { Lectures }
$$

Textbooks:

1. An Introduction to Mechanics:

Daniel Kleppner \& Robert Kolenkow

2. The Physics of Vibrations \& Waves: A. P. French

Mechanics

Chapter No. 2 : Review of Newton's Equations

Chapter No. 3 : Linear Momentum
Chapter No. 4 : Work, Energy \& Power
Chapter No. 6 : Angular Momentum
Chapter No. 8 : Non-inertial systems and Fictitious Forces

A world simple enough to be understood, would be too simple to produce a mind that can understand it.
J.D. Barrow

Chapter 2

- Constrained Motion
- Newton's Equations in Polar Coordinates

Constrained Motion

Examples

1. Pulley-mass system

2. Block on a fixed wedge

Constraint equation :

$$
\frac{\mathrm{x}}{\ell}+\frac{\mathrm{y}}{\mathrm{~h}}=1 \Rightarrow \mathrm{a}_{\mathrm{y}}=-\frac{\mathrm{h}}{\ell} \mathrm{a}_{\mathrm{x}}
$$

Prob. 2.16

Block on accelerated wedge Angle of wedge : 45°

Acceleration of
 wedge : A, to right

No friction between block and wedge
Q : What is the acceleration of the block w.r.t. the ground

Constraint Equation :

$$
\begin{gathered}
x+y=h+\frac{1}{2} A t^{2} \Rightarrow a_{x}+a_{y}=A \\
\frac{N}{\sqrt{2}}+\left(\frac{N}{\sqrt{2}}-m g\right)=m A \Rightarrow N=\frac{m}{\sqrt{2}}(A+g)
\end{gathered}
$$

$$
\therefore \mathrm{a}_{\mathrm{x}}=\frac{1}{2}(\mathrm{~A}+\mathrm{g}) ; \mathrm{a}_{\mathrm{y}}=\frac{1}{2}(\mathrm{~A}-\mathrm{g})
$$

The block will climb up the wedge iff $A>g$

Suppose the wedge is left to itself and is free to move on a frictionless surface.

$$
\begin{aligned}
& \frac{\mathrm{N}}{\sqrt{2}}+\left(\frac{\mathrm{N}}{\sqrt{2}}-\mathrm{mg}\right)=-\frac{\mathrm{N}}{\sqrt{2}} \quad \text { (Mass of } \\
& \\
& \Rightarrow \frac{\mathrm{N}}{\sqrt{2}}=\frac{\mathrm{mg}}{3} \\
& \therefore \quad a_{x}=\frac{g}{3} ; \quad a_{y}=-\frac{2 g}{3} ; \quad A_{x}=-\frac{\mathrm{g}}{3}
\end{aligned}
$$

Prob. 2.20

The Pedagogic Machine

Consider the "pedagogic machine". All surfaces are frictionless. Find the acceleration of block M_{1} when the system is released.

Constraint Equation :

$$
\begin{gathered}
\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\left(\mathrm{y}_{0}-\mathrm{y}\right)=\ell \\
\Rightarrow \mathrm{a}_{1}-\mathrm{a}_{2}-\mathrm{a}_{3}=0
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{T}=\mathrm{M}_{2} \mathrm{a}_{2} \\
& \mathrm{~T}-\mathrm{M}_{3} \mathrm{~g}=\mathrm{M}_{3} \mathrm{a}_{3} \quad \mathrm{a}_{1}-\mathrm{a}_{2}-\mathrm{a}_{3}=0 \\
& \mathrm{~T}=-\left(\mathrm{M}_{1}+\mathrm{M}_{3}\right) \mathrm{a}_{1}
\end{aligned}
$$

Four unknowns, $\mathrm{T}, \mathrm{a}_{1}, \mathrm{a}_{2} \& \mathrm{a}_{3}$, and four equations!

All four unknowns can be solved for.

In particular,

$$
a_{1}=-\frac{M_{2} M_{3}}{M_{1} M_{2}+M_{1} M_{3}+2 M_{2} M_{3}+M_{3}^{2}} g
$$

Newton's Equations in Polar Co-ordinates

Review of Newton's Eq. in Cartesian
Co-ordinates

The Cartesian System

Equations of Motion

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \hat{\mathrm{i}}+\mathrm{y}(\mathrm{t}) \hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{v}}(\mathrm{t})=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\dot{\mathrm{x}} \hat{\mathrm{i}}+\dot{\mathrm{y}} \hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=\ddot{\mathrm{x}} \hat{i}+\ddot{\mathrm{y}} \hat{\mathrm{j}}
\end{aligned}
$$

$$
m \vec{a}=\vec{F} \Rightarrow m(\ddot{x} \hat{i}+\ddot{y} \hat{j})=F_{x} \hat{i}+F_{y} \hat{j}
$$

$$
\Rightarrow m \ddot{x}=F_{x} ; m \ddot{y}=F_{y}
$$

Polar Co-ordinates

The Polar Grid and Unit Vectors

Resolving Vectors in Polar Coordinates

Unit vectors ($\hat{r}, \hat{\theta}$) in the polar co-ordinates vary from point to point, unlike unit vectors (\hat{i}, \hat{j}) in the Cartesian co-ordinates.

Expressing ($(\hat{r}, \hat{\theta})$ in terms of $(\hat{i}, \hat{\mathrm{j}})$.
$\hat{r}=\cos \theta \hat{i}+\sin \theta \hat{j}$
$\hat{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}$

Newton's Equations of Motion in Polar Coordinates

$\hat{r}=\cos \theta \hat{i}+\sin \theta \hat{j}$
$\hat{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}$
$\dot{\hat{\mathrm{r}}}=\dot{\theta} \hat{\theta} \quad \& \dot{\hat{\theta}}=-\dot{\theta} \hat{\mathrm{r}}$

We have,

$$
\overrightarrow{\mathrm{r}}=\mathrm{r} \hat{\mathrm{r}}
$$

$$
\begin{aligned}
\overrightarrow{\mathrm{v}} & =\dot{\overrightarrow{\mathrm{r}}}=\dot{\mathrm{r}} \hat{\mathrm{r}}+\mathrm{r} \dot{\hat{\mathrm{r}}} \\
& =\dot{\mathrm{r}} \hat{\mathrm{r}}+\mathrm{r} \dot{\theta} \hat{\theta} \quad \Rightarrow \mathrm{v}_{\mathrm{r}}=\dot{\mathrm{r}} \& \mathrm{v}_{\theta}=\mathrm{r} \dot{\theta}
\end{aligned}
$$

Another differentiation leads to

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=\dot{\overrightarrow{\mathrm{v}}}=\ddot{\mathrm{r}} \hat{\mathrm{r}}+\dot{\mathrm{r}} \dot{\theta} \hat{\theta}+\dot{\mathrm{r}} \dot{\theta} \hat{\theta}+\mathrm{r} \ddot{\theta} \hat{\theta}-\mathrm{r} \dot{\theta}^{2} \hat{\mathrm{r}} \\
&=\left(\ddot{\mathrm{r}}-\mathrm{r} \dot{\theta}^{2}\right) \hat{\mathrm{r}}+(\mathrm{r} \ddot{\theta}+2 \dot{\mathrm{r}} \dot{\theta}) \hat{\theta} \\
& \text { Comparing with } \overrightarrow{\mathrm{a}}=\mathrm{a}_{\mathrm{r}} \hat{\mathrm{r}}+\mathrm{a}_{\theta} \hat{\theta}
\end{aligned}
$$

$$
a_{r}=\ddot{\mathrm{r}}-\mathrm{r} \dot{\theta}^{2} \& \mathrm{a}_{\theta}=\mathrm{r} \ddot{\theta}+2 \dot{\mathrm{r}} \dot{\theta}
$$

$$
\left.\therefore \mathrm{m}\left(\ddot{\mathrm{r}}-\mathrm{r} \dot{\theta}^{2}\right)=\mathrm{F}_{\mathrm{r}} \quad\right\} \quad \text { Newton's Eqs. in }
$$

$$
\mathrm{m}(\mathrm{r} \ddot{\theta}+2 \dot{\mathrm{r}} \dot{\theta})=\mathrm{F}_{\theta} \int
$$

Prob. 2.29
A car moving radially outward on revolving platform.

Ang. Velocity of platform = $\boldsymbol{\omega}$ (constant)

Velocity of car w.r.t.
platform $=\mathrm{v}_{0}$
Coeff. of friction $=\mu$
Car starts from centre of platform

Find:

a) Acceleration of car as a function of time using polar coordinates. Show by vector diagram
b) The time at which the car starts to skid
c) Direction of frictional force at the time of skidding
a) We have :

$$
\begin{aligned}
r & =v_{0} t \\
\theta & =\omega t \\
\therefore a_{r} & =\ddot{r}-r \dot{\theta}^{2}=-r \omega^{2} \\
a_{\theta} & =r \ddot{\theta}+2 \dot{r} \dot{\theta}=2 v_{0} \omega
\end{aligned}
$$

b) Net force on car :

$$
\begin{aligned}
F= & \sqrt{F_{r}^{2}+F_{\theta}^{2}}=m \sqrt{a_{r}^{2}+a_{\theta}^{2}} \\
& =m \sqrt{r^{2} \omega^{4}+4 \omega^{2} v_{0}^{2}} \\
& =m \sqrt{v_{0}^{2} \omega^{4} t^{2}+4 \omega^{2} v_{0}^{2}}=m \omega v_{0} \sqrt{4+\omega^{2} t^{2}}
\end{aligned}
$$

The car will start to skid when

$$
\mathrm{F}=\mu \mathrm{mg} \Rightarrow \mathrm{t}=\frac{\sqrt{\mu^{2} \mathrm{~g}^{2}-4 \omega^{2} \mathrm{v}_{0}^{2}}}{\mathrm{v}_{0} \omega^{2}}
$$

c) Direction of frictional force at the time of skidding

Prob. 2.33

Rod with a mass m on it. Rod rotates with constant angular velocity won a horizontal
 plane and mass free to slide.
i) Show that motion is given by
$r(t)=A e^{-\beta t}+B e^{\beta t}$
Find β.
ii) Show that for a particular choice of initial conditions, it is possible to obtain a solution such that r continually decreases and that for all other choice, r will eventually increase.
a) The Polar equations are :

$$
\begin{aligned}
& \left(\ddot{\mathrm{r}}-\mathrm{r} \omega^{2}\right)=0 \\
& 2 \mathrm{~m} \omega \dot{\mathrm{r}}=\mathrm{F}_{\theta}=\mathrm{N}
\end{aligned}
$$

The radial equation is

$$
\frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}}=\omega^{2} \mathrm{r}
$$

The coordinate r Should be such a function of t that twice differentiation of r w.r.t. t will be proportional to itself.

An intelligent guess :

$$
r(t)=e^{\beta t}
$$

Substituting this into the LHS

$$
\begin{aligned}
& \beta^{2} r=\omega^{2} r \\
& \Rightarrow \beta= \pm \omega
\end{aligned}
$$

\therefore Both $\mathrm{e}^{\omega t} \& \mathrm{e}^{-\omega t}$ are solutions for r
The given equation being a linear equation, the most general solution is

$$
r(t)=A e^{\omega t}+\mathrm{Be}^{-\omega t}
$$

where, A \& B are constants to be determined

ii) Let the initial conditions be :

$$
\mathrm{r}(0)=\mathrm{r}_{0} \& \dot{\mathrm{r}}(0)=\mathrm{v}_{0}
$$

The complete solution is then :

$$
\mathrm{r}(\mathrm{t})=\frac{1}{2}\left(\mathrm{r}_{0}+\mathrm{v}_{0} / \omega\right) \mathrm{e}^{\omega t}+\frac{1}{2}\left(\mathrm{r}_{0}-\mathrm{v}_{0} / \omega\right) \mathrm{e}^{-\omega t}
$$

Now,

$$
\frac{\mathrm{dr}}{\mathrm{dt}}=\frac{1}{2}\left[\left(\mathrm{r}_{0} \omega+\mathrm{v}_{0}\right) \mathrm{e}^{\omega t}-\left(\mathrm{r}_{0} \omega-\mathrm{v}_{0}\right) \mathrm{e}^{-\omega t}\right]
$$

For dr/dt to be negative, the coeff. of $e^{\omega t}$ must be negative.

Additional Part

What is the normal force of the rod on the bead?

$$
\mathrm{N}=2 \mathrm{~m} \omega \dot{\mathrm{r}}=\mathrm{m} \omega^{2}\left[\left(\mathrm{r}_{0}+\frac{\mathrm{v}_{0}}{\omega}\right) \mathrm{e}^{\omega t}-\left(\mathrm{r}_{0}-\frac{\mathrm{v}_{0}}{\omega}\right) \mathrm{e}^{-\omega t}\right]
$$

Prob. 2.35

A block of mass m slides on the inside of a ring fixed to a frictionless table. It is given an initial velocity of v_{0}. Coefficient

of friction between the ring and the block is μ. Find the velocity and position at a later time t.

ANS:

The polar equations are :
$\mathrm{m}\left(\dot{\mathrm{r}}-\mathrm{r} \dot{\theta}^{2}\right)=-\mathrm{mR} \dot{\theta}^{2}=-\mathrm{N}$
$\mathrm{m}(\mathrm{r} \ddot{\theta}+2 \dot{\mathrm{r}} \dot{\theta})=\mathrm{mR} \ddot{\theta}=-\mu \mathrm{N}$

Substituting \mathbf{N} from the first equation in the second

$$
\ddot{\theta}=-\mu \dot{\theta}^{2}
$$

Putting $\dot{\theta}=\omega$

$$
\begin{aligned}
& \frac{d \omega}{d t}=-\mu \omega^{2} \\
& \int_{\omega_{0}}^{\omega} \frac{\mathrm{d} \omega^{\prime}}{\omega^{\prime 2}}=-\mu \int_{0}^{\mathrm{t}} \mathrm{dt}^{\prime} \Rightarrow\left[\frac{1}{\omega}-\frac{1}{\omega_{0}}\right]=\mu \mathrm{t}
\end{aligned}
$$

$$
\begin{aligned}
& \omega=\frac{\omega_{0}}{1+\mu \omega_{0} t} \Rightarrow v=\frac{R v_{0}}{R+\mu v_{0} t} \\
& \frac{d \theta}{d t}=\frac{\omega_{0}}{1+\mu \omega_{0} t} \\
& \int_{0}^{\theta} d \theta^{\prime}=\int_{0}^{\mathrm{t}} \frac{d t^{\prime}}{1+\mu \omega_{0} t^{\prime}} \\
& \theta=\frac{1}{\mu \omega_{0}} \ln \left[1+\mu \omega_{0} t\right]
\end{aligned}
$$

Prob. 2.37

A bowl shaped racing track, on which a racing vehicle can move in horizontal circles without friction.

Q : What should be the equation of the vertical cross section of the track, so that it takes the same time T to circle the track, whatever be its elevation

$\mathrm{N} \cos \theta=\mathrm{mg}$ Since, $v=\frac{2 \pi x}{T}$,
$\mathrm{N} \sin \theta=\frac{m v^{2}}{\mathrm{x}}$

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{4 \pi^{2} \mathrm{x}}{\mathrm{gT}^{2}}=\mathrm{kx}
$$

$\therefore \tan \theta=\frac{d y}{d x}=\frac{v^{2}}{g x}$

$$
\Rightarrow \mathrm{y}=\mathrm{k} \frac{\mathrm{x}^{2}}{2}
$$

(Parabola)

