
Birla Institute of Technology and Science, Pilani, Hyderabad Campus
Department of Computer Sc. and Information Systems

Second Semester 2021-2022
CS F211 (Data Structures and Algorithms)

Date: 17th Jan 2022

Course Number : CS F211 (L:3, P:1, U:4) T, Th, S: 2nd hour
Course Title : Data Structures and Algorithms
Instructor-In-Charge : Prof. Chittaranjan Hota (hota[AT]hyderabad.bits-pilani.ac.in)
Instructors : Prof. N L Bhanumurthy, Dr. R Venkatakrishnan, Dr. Barsha Mitra, Dr.

 Manjana B, and Dr. Sameera M Salam

Scope and Objectives of the Course:
A data structure is a collection of large amounts of data values, the relationships among them, and the
functions or operations that can be applied on them. In order to be effective, data has to be organized
in a manner that adds to the effectiveness of an algorithm, and data structures such as stacks, queues,
linked lists, heaps, trees, and graphs provide different capabilities to organize and manage large
amounts of data. While developing a program or an application, many developers find themselves more
interested in the type of algorithm used rather than the type of data structure implemented. However,
the choice of data structure used for a particular algorithm is always of paramount importance. For
example, B-trees have unique abilities to organize indexes and hence are well suited for implementation
of databases; Linked lists are well suited for backtracking algorithms like, accessing previous and next
pages in a web browser; Tries are well suited for implementing approximate matching algorithms like,
spell checking software or predicting text in dictionary lookups on Mobile phones; Graphs are well
suited for path optimization algorithms (like in Google maps) or searching in a Social graph (like
Facebook). As computers have become faster and faster, the problems they must solve have become
larger and more complex, requiring development of more complex programs. This course will also
teach students good programming and algorithm analysis skills so that they can develop such programs
with a greater degree of efficiency.

The primary objectives of the course are as under:

 Apply various basic data structures such as stacks, queues, linked lists, trees etc. to solve complex

programming problems. Understand basic techniques of algorithm analysis.

 Design and implement advanced data structures like graphs, balanced search trees, hash tables,
priority queues etc. Apply graph and string algorithms to solve real world problems like finding
shortest paths on huge maps or detecting plagiarism percentage.

 Apply basic algorithmic techniques such as brute-force, greedy algorithms, divide and conquer,

dynamic programming etc. to solve complex programming problems and examine their efficiency.

At the end of the course, you should understand common data structures and algorithms, be able to
develop new data abstractions (interfaces) and use existing library components in C++.

Text Book:
T1: Introduction to Algorithms, TH Cormen, CE Leiserson, RL Rivest, C Stein, 3rd Ed., MIT Press,
PHI, 2010.

Reference Books:
R1: Data Structures and Algorithms in C++, Michael T. Goodrich, Roberto Tamassia, David M.
Mount, 2nd Edition, 2011, Wiley (e-book in India).
R2: Data Structures & Algorithm Analysis in C++, Mark Allen Weiss, 4th Edition, Pearson, 2014.
R3: Data Structures and Algorithms, Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, 4th Indian
reprint, Pearson, 2001.

https://www.wiley.com/en-in/search?pq=%7Crelevance%7Cauthor%3AMichael+T.+Goodrich
https://www.wiley.com/en-in/search?pq=%7Crelevance%7Cauthor%3ARoberto+Tamassia
https://www.wiley.com/en-in/search?pq=%7Crelevance%7Cauthor%3ADavid+M.+Mount
https://www.wiley.com/en-in/search?pq=%7Crelevance%7Cauthor%3ADavid+M.+Mount

Lecture Plan:

Lectu
re#

Learning
Objectives Topics to be covered

Chapter in

the Text

Book

1 The role of DS and
Algorithms in
Computing.

What kinds of problems are solved by algorithms? Journey
from problems to programs.

T1 (1), R3(1)

2 Introduction to
C++.

Classes: Class Structure, Constructors, Class Friends and Class
Members, Standard Template Library (STL), An example
C++ program.

R1 (1.5, 1.6)

3-4 To understand the
features of Object
Oriented
Paradigm.

Object Oriented Design: Goals, Principles and Design
Patterns; Inheritance and Polymorphism; Interfaces and
abstract classes; Templates.

R1 (2.1, 2.2,
2.3)

5-7 Implementing
elementary data
structures and
algorithms.
Understanding
techniques for
Algorithm analysis.

Using arrays, Insertion and removal from a Linked list,
generic single linked list, doubly linked lists, circular linked
lists, linear and binary recursion.

T1 (10),
R1 (3.1, 3.2,
3.3, 3.5)

8-9 Functions: Linear, N-Log-N, Quadratic functions etc.,
Asymptotic notation and asymptotic analysis, Using Big-Oh
notation, Examples of analysis.

T1 (2), T1(3)

R1 (4.1, 4.2)

10-12
Implementing
more common
data structures and
algorithms like
Stacks, Queues,
Deques, Vectors,
List ADTs,
Sequences, and
Trees. Using
Amortization to
perform a set of
push operations on
a vector.

Stack ADT, Array-based stack implementation, stack
implementation using generic linked list, Applications of
stacks: matching tags in an HTML document; Queue ADT,
Array-based and circular linked list based implementation.

T1(10),

R1 (5.1, 5.2)

13 Double-Ended queue: Deque ADT, Implementing using
doubly linked lists, Adapters: Implementing stack using
Deque.

T1(10),
R1 (5.3)

14 Vector ADT, Simple Array-based implementation;
Extendable array based implementation (Amortization) and
STL Vectors.

R1 (6.1)

15-16 List ADT: Node based operations and Iterators, doubly
linked list implementation, Sequence ADT, Applications:
Bubble sort on sequences, and its analysis.

T1(10),
R1 (6.2, 6.3,
6.4)

17-18 General Trees: Properties and functions, Traversal algorithms:
Pre order, post order traversals, Binary tree: ADTs, Linked
and Vector structures for Binary trees, Binary tree traversal,
Template function pattern.

T1(10),

R1 (7.1, 7.2,
7.3)

19-21

Implementing
Advanced data
structures like
Priority queues,
Heaps, Hash
tables, Maps, Skip
lists, Dictionaries,
Search Trees.

Priority Queue ADT, Implementing using Lists, Algorithms
suitable for Priority queues, Heap: Complete binary trees and
their representation, Implementing Heaps using Priority
queue, Heap sort as an example.

T1(6),
R1 (8.1, 8.2,
8.3)

22-24 Map ADT, Implementation using Lists, Hash tables: Bucket
arrays, hash functions, compression functions, collision-
handling schemes, Rehashing into a new table,
Implementation of hash tables, Skip lists: Search and update
operation implementations.

T1(11),
R1 (9.1, 9.2,
9.4)

25 Dictionary ADT: Implementation with location-aware entries. R1 (9.5)

26-28 Binary Search Trees: Operations and Analysis, AVL Trees:
Insertion and deletion, Analysis, Multi-way search trees, Red-
Black Trees: Operations and analysis.

T1(12),T1(13)
R1 (10.1,
10.2, 10.4,
10.5)

29-30

Understanding
various basic

Merge sort: Divide and conquer, merging arrays and lists,
running time of merge sort; Quick sort: Randomized quick
sort.

T1(4), T1(5)
R1 (11.1,
11.2)

 31-32

Algorithmic
techniques and
usage of
appropriate data
structures along
with their
applications and
analysis.

Sorting through algorithmic lens: Lower bound, Linear time:
Bucket and Radix sort, Comparing sorting algorithms.

T1(6), T1(7),
T1(8),
R1 (11.2,
11.3)

33 Sets: Set ADT, Mergable sets, Partitions; Selection: Prune-
and-Search, randomized quick-select.

T1 (7),
R1 (11.4,
11.5)

34-35 Strings and Dynamic programming: String operations, Matrix
Chain-Product as an example, Applying Dynamic
programming to LCS problems.

T1 (15),
R1 (12.1,
12.2)

36-37 Pattern matching algorithms: Brute force, Boyer-Moore
algorithm, KMP algorithm, Pattern matching using Tries.

R1 (12.3)

38 Graph Algorithms: Graph ADT, Data structures for graphs:
Edge list, Adjacency list, Adjacency matrix.

T1(22),
R1 (13.1,
13.2)

39-40 Graph Traversals: DFS, and BFS, Traversing a Diagraph,
Transitive closure.

T1 (22),
R1 (13.4)

41-42 Shortest path and MST: Dijkstra, Kruskal, and Prim-Jarnik
algorithms.

T1(23),T1(24)
R1 (13.5,
13.6)

Evaluation Scheme:

Component Duration Weight
age(%)

Date & Time Nature of the
component

Mid sem Test 90 min 30% 15.03.2022 (11 am) Part Open

Lab Test (One) 1 hr. 15% To be announced Open Book

One group project & demo 0.5 hrs./group 20% To be announced Open Book

Comprehensive examination 120 min. 35% 06.05.2022 (AN) Part Open

Note1: For Comprehensive exam and Mid-semester Test, the mode (offline/online) and the duration
are subject to changes as decided by the AUGSD/Timetable division in future.

Note2: minimum 40% of the evaluation to be completed by midsem grading.

Make-up-Policy:
Make-up exams will be strictly granted on prior permission and on genuine grounds only. A request
email should reach the I/C on or before the test.

Course Notices and Material:
Course material pertaining to this course will be made available on a regular basis on the course
webpage in googleclass page and will be used for notices, announcements, grades, quizzes, and
googlemeet recordings. Project demos will be taken on the machines owned by students/ online.

Consultation Hour: Tuesday (5 to 6pm).

Academic Honesty and Integrity Policy:
Academic honesty and integrity are to be maintained by all the students throughout the semester and
no type of academic dishonesty is acceptable.

 Instructor-In-Charge, CS F211

