

SECOND SEMESTER 2013-2014 Course Handout Part II

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CS F111 Course Title: Computer Programming

Instructor-in-Charge: <u>VISHAL GUPTA</u> (email: vishalgupta@pilani.bits-pilani.ac.in)

Instructors:

Name	EMail@pilani.bits- pilani.ac.in	Name	EMail@pilani.bits-pilani.ac.in
	pilatili.ac.itt		
Sundaresan	sundaresan.raman	Chandramani	chandramani.chaudhary
Raman		Chaudhari	
Asma Rani	asma.rani	Sonal Kumari	sonal.kumari1910@gmail.com
Avinash Gautam	avinash	Jagat Sesh Challa	jagatsesh
K Manjusha	manjusha	Saiyedual Islam	sislam
Mayuri Digalwar	mayuri	Mohit Sati	mohitsatil@gmail.com
Murali P	muralip	Rupal Bhargava	rupal.bhargava
N Mehala	mehala	Neetika Gupta	neetika.gupta
Shailendra S	shailu	Rajkiran Reddy	rajkiranreddyy@gmail.com
Shekhawat			
S P Vimal	vimalsp	Harish Sharma	harish.sharma
Sunita Singhal	sunita_bansal	Nitin Rajput	nitinsinghrajputt@gmail.com
Vikas Singh	vikas		
Virendra S	vsshekhawat		
Shekhawat			

1. Objective:

The primary goals of the course are to introduce:

- Basic representation of data and how to process data using the representation inside a computer.
- Techniques for specifying data, operations on data, and problem solving using a programming language.
- Systematic techniques and approaches for constructing programs.

2. Scope:

The course covers the following topics: Basic Model of a Computer; Problem Solving – Basic Computing Steps and Flow Charting (Assignment, Sequencing, Conditionals, Iteration). Programming Constructs – Expressions, Statements, Conditionals, Iterators/Loops, Functions/Procedures; Data Types – Primitive Types, Tuples, Choices (Unions or Enumerations), Lists/Arrays, Pointers and Dynamically Allocated Data. Input output and Files.

While the topics are taught using a specific language, the intent of the course is to teach a programming methodology, and not a programming language. There is also a laboratory component that involves development and testing of iterative and procedural programs using bounded and unbounded iterations, function composition, random access lists, sequential access lists, dynamically allocated lists, and file access.

3. Text and Reference:

3 (a) Text Book:

TB1. J.R. Hanly and E.B. Koffman, *Problem Solving and Program Design in C*. 5th Edition. Pearson Education 2007.

3 (b) Reference Books:

RB1. Yale Patt, Sanjay Patel. *Introduction to Computing Systems: From bits & gates to C & beyond*, Second edition, McGraw Hill.

RB2. Behrouz A Forouzan & Richard F Gilberg . *Computer science A structured programming approach using C.* Cengage Learning 3rd Edition

RB3. Brian W. Kernighan, Dennis Ritchie. *The C Programming Language*. Prentice Hall. 2nd Edition.

4. Teaching Pedagogy

To improve upon the teaching pedagogy, the course will be offered using *flipped classroom*. It is a form of blended learning in which students will learn new content online by watching video lectures, and what used to be homework (assigned problems) will now be done in class with instructor offering more personalized guidance and interaction with students, instead of lecturing.

The content is recorded by Instructor-Incharge/Instructor(s) and will be available on portal <u>https://bitspilani.coursera.org/</u>. Coursera will serve as a platform for making online content available to the students.

Other than recorded content, for each student, each (logical) week will have following interactive sessions:

- Two tutorial sessions (50 mins each): Each session will focus on problem solving based on online available recorded content. <u>Students are expected to listen to recorded lectures before coming to</u> <u>tutorials</u> and solve problems under the supervision of instructor.
- 2. **One lab session (2 hours)**: Here, under the supervision of lab instructors, students will solve problems on computers.
- 3. **One lecture (50 mins)**: The purpose is to take any unanswered-questions/doubts of the students and not to teach any new topic.

5. Course Plan

5(a): Modules

Module	Theme	Learning Objectives
Ι	Basic data, data types, and data representation	To understand how to define, represent, and process basic data.
II	Analyzing, designing, and managing a process or program for any given problem.	To diagrammatically understand and visualize an algorithm using boxes of various kinds. This representation gives a step by step insight to a solution of a given problem.
Ш	Basic Problem Solving – Structured Programming	To understand constructs of structured programming including conditionals and iterations
IV	Advanced Problem Solving – Program Structuring and Structured Data	To understand how to structure complex data and how to systematically structure large programs
V	User Defined Data and Dynamic Data	To understand how users can define the structure and operations of new forms of data using known forms
VI	Advanced Topics – File I/O and Recursion	To understand recursive programming and to understand how to access files and contents of files

5(b) Tutorial Lecture, Recorded lecture schedule [Legends: RL- Recorded Lecture; T - Tutorial; TB - Text Book; RB - Reference Book (as mentioned in 3(b) above)]

Week Number	•		Recorded Lecture Number	Reference	Tutorial Number
		Introduction to the subject; teaching pedagogy	Intro_lec		Self Learning
	I (a)	Basics of Computing – Data and Computation. Model of a computer	RL 1.0	RB1: 1.1 to 1.7	Self Learning
	I (b)	Binary number system; what data to represent in binary number system?		RB1: 2.1,	
	I (c)	I (c) Unsigned Integers: Binary representation; word size; extension; range.		2.2.1	
1	I (d)	Signed Integers: Binary representation in (a) Sign magnitude, (b) one's complement, and (c) two's complement.	RL 1.2	RB1: 2.2.1, 2.3	T1
	I (e)	Advantages, disadvantages, sign extension, and range of signed integers in all three respective representations.			
	I (f)	Overflow in two's complement form.	RL 1.3	RB1: 2.5.3	
	I (g)	Floating point number representation	RL 1.4	RB1: 2.7.2	
	I (h)	Character, string, and other data representation.	RL 1.4	RB1: 2.7.3	
	I (i)	Conversions among decimal, binary, hexadecimal, and octal number systems (for signed, unsigned, and floating point numbers)	RL 1.5	RB1: 2.4, 2.7.4	T2
	I (j)	Arithmetical and logical operations on	RL 1.6	RB1: 2.5,	

binary numbers	2.6	
		1
II (a) Flow Charts: Graphical Symbols, Examples R	L 2.1 Recorded Lecture	T1
2 II (b) Flow Charts: Sequential and Conditional constructs R	Recorded Lecture	-
II (c) Flow Charts: Loops; Searching and Sorting R	Recorded Lecture	T2
III (a)Memory and Variables – Locations, Addresses, Definitions and Declarations; Program structureR	TB1: 2.1, 2.2, 2.3, 2.4	T1
III (b) Data types, Operators, and expressions R	TB1: 2.5	-
3 III (c) Enumerated Data Types RL	. 3.2.1 TB1: 7.3	
III (d) Expression evaluation: Operator Precedence and Associativity	TB1: 2.5	
III (e) Expression evaluation with different data types: type conversion (implicit and explicit)	TL 3.4 TB1: 2.5	T2
III (f) Logical expressions and evaluation R	TB1: 4.1, 4.2	
III (g)Sequential and Conditional execution; Control Statements (different forms of conditional statements).R	TB1: 4.3	T1
III (h) Conditional statements: different forms of nested conditional constructs.	TB1: 4.7	T2
III (i) Multi way branching: selection control R	TB1: 4.8	1

		mechanism using switch statement			
	III (j) Problem solving using Iterative Constructs: While statement		RL 5.1	TB1: 5.1, 5.2	
5	III (k)	Problem solving using Iterative Constructs: For statement		TB1: 5.4, 5.5	T1
	III (1)	Problem solving using Iterative Constructs: Do-while statement	RL 5.2	TB1: 5.8	
	III (m)	Problem solving using Nested iterative constructs	RL 5.3	TB1: 5.6, 5.7	T2
	IV (a)	Structure data: One dimensional random access lists: declaring, initializing, and accessing list elements	RL 6.1	TB1: 8.1, 8.2, 8.3	T1
6	IV (b)	Structure data: Multi-dimensional random access lists: declaring, initializing, and accessing array elements	RL 6.2	TB1: 8.7	
	IV (c)	Searching: Linear and Binary search	RL 6.3	TB1: 8.6	T2
	IV (d)	Sorting: selection and bubble sort	RL 6.4	TB1: 8.6	12
7	IV (e)	Modularity and reuse: Functions with return types/without return types, arguments/without arguments	RL7.1	TB1: 3.1, 3.4, 3.5	
	IV (f)	Parameter passing: Pass by value, scope of data	RL 7.2	TB1: 6.1, 6.2, 6.3, 6.4	T1
	IV (g)	Transforming week #4 programs using	RL 7.3	Recorded	

		functions		Lectures	
	IV (h)	Transforming week #5 programs using functions	RL 7.4	Recorded Lectures	
	IV (i)	Transforming week #6 programs using functions	RL 7.5	Recorded Lectures	T2
	IV (j)	Data type: Pointers, referencing a memory location and obtaining a value stored at that location	RL 8.1	TB1: 6.1	T1
8	IV (k)	Random access lists and pointers	RL 8.2	Recorded Lectures	
	IV (1)	Pointer arithmetic	RL 8.3	Recorded Lectures	T2
	IV (m)	Structured data: strings	RL 9.1	TB1: 9.1, 9.2, 9.3, 9.4	T1
9	IV (n)	Standard Library string functions: design and implementation	RL 9.2	TB1: 9.5, 9.6, 9.7	
	V(a)	User defined data type: structure	RL 9.3	TB1: 11.1, 11.2, 11.2, 11.3	T2
10	V (a)	Memory Layout – Implicit vs. Explicit Allocation; Static vs. Dynamic Allocation; Motivation for Dynamic Allocation	RL 10.1	TB1: 14.1, 14.2	T1
_	V (b)	Linked Lists: Node structure	RL 10.2	TB1: 14.3	
		Linked Lists: Inserting a node	RL 10.3	TB1: 14.4	T2

11	V (c)	Linked Lists operations: Deleting a node	RL 11.1	TB1: 14.4	T1
	V (d)	Linked Lists operations: Searching	RL 11.2	TB1: 14.4	T2
12	VI (a)	Files and File I/O: External Storage, Files and File Systems; File Operations and I/O Operations;	RL 12.1	TB1: 12.1, 12.2	T1
	VI (b)	Divide and Conquer – Design using Recursion ; Recursive procedures; Recursion vs. Iteration	RL 12.2	TB1: 10.1, 10.2, 10.3, 10.4	T2

6. Evaluation Scheme: [Legends: OB - Open Book, CB - Closed Book]

S. No.	Component	CB/OB	Time	Weight	Date
1	Midterm test	OB	90 mins	22 %	As per ID
2	Online Test	OB	120 mins	20 %	April 20, 2014
3	Evaluated Tutorials	СВ	15 mins each	18 %	Every Week (mostly)
4	Labs	OB	During Lab hour	10 %	Every Week
5	Comprehensive Exam	OB	120 mins	30 %	May 07, 2014

7. Make-up Policy:

- Out of **N** number of quiz components (Evaluated Tutorials) conducted in tutorials, **(N-1)** will be considered for final grading. Similarly, out of **M** number of Lab components, **(M-1)** will be considered for final grading. No Make-up will be granted for Quizzes and Labs under any condition.
- Prior Permission of the Instructor-in-Charge is required to get make-up for the mid-term test and online test. Only on producing documentary proof of possible absence, which proves that student would be physically unable to appear for the test/exam, the decision of granting the make-up will be taken.

- Prior Permission of Dean, Instruction Division is usually required to get make-up for the comprehensive exam.
- Instructor / Dean's decision in the matter of granting Make-up would be final.

8. Consultation Hours: See course website

9. Notices: All notices concerning this course will be displayed under the ANNOUNCEMENTS section on the course website (*https://bitspilani.coursera.org/introprogramming-001*). Optionally, if there is a need, email would be used on short notice – only BITS Pilani mail would be used.

VISHAL GUPTA Instructor – In- Charge CS F111(Computer Programming)

