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SVD in finite dimensional setting

Some basic notions1

Usual inner product in Rd :

〈x , y〉 =
d∑

i=1

x(j)y(j), x , y ∈ Rd .

Usual norm on Rd :

‖x‖ =
√
〈x , x〉 =

√√√√ d∑
i=1

|x(i)|2.

For x , y ∈ Rd , x is orthogonal to y if 〈x , y〉 = 0.
S ⊆ Rd is an orthonormal set if for every x , y ∈ S ,

〈x , y〉 =

{
1 if x = y ,
0 if x 6= y .

1M.T. Nair & A. Singh: Linear Algebra, Springer 2018.
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Every orthonormal set is linearly independent.

(Gram-Schmidt) Given any basis {u1, . . . , ud} of Rd there
exists an orthonormal set {v1, . . . , vd} such that

span{u1, . . . , uj} = span{v1, . . . , vj}, j = 1, . . . , d .

In particular, Rd has bases consisting of orthonormal vectors.

(Projection theorem) If S ⊆ Rd is a subspace, then

Rd = S + S⊥.

x = u + v , u ∈ S , v ∈ S⊥ implies

‖x − u‖ = inf
w∈S
‖x − w‖.
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Adjoint

Theorem

For every linear transformation A : Rn → Rm, there exists a unique
linear transformation A∗ : Rm → Rd satisfying

〈Ax , y〉 = 〈x ,A∗y〉 ∀ x ∈ Rn, y ∈ Rm.
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Proof.

Let {u1, . . . , un} and {v1, . . . , vm} be orthonormal bases of Rn and
Rm, respectively. For x ∈ Rn and y ∈ Rm, we have

x =
n∑

i=1

〈x , ui 〉ui , y =
n∑

j=1

〈y , vj〉vj .

Then,

〈Ax , y〉 =
n∑

j=1

n∑
i=1

〈x , ui 〉〈Aui , vj〉〈y , vj〉

=
〈
x ,

n∑
j=1

n∑
i=1

〈Aui , vj〉〈y , vj〉ui
〉

= 〈x ,A∗y〉,

A∗y :=
n∑

j=1

n∑
i=1

〈Aui , vj〉〈y , vj〉ui , y ∈ Rm.
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Proof continues.

Then, A∗ : Rm → Rn is a linear transformation and it satisfies

〈Ax , y〉 = 〈x ,A∗y〉 ∀ x ∈ Rn, y ∈ Rm.

If Ã : Rm → Rn is a linear transformation satisfying

〈Ax , y〉 = 〈x , Ãy〉 ∀ x ∈ Rn, y ∈ Rm,

then we have

〈x , Ãy〉 = 〈x ,A∗y〉 ∀ x ∈ Rn, y ∈ Rm

so that Ã = A∗.

M. T. Nair SVD



Definition

Let A : Rn → Rm be a linear transformation. Then the unique
linear transformation A∗ : Rm → Rd obtained by Theorem 1 is
called the adjoint of A. ♦

Definition

A linear transformation A : Rn → Rn which is the adjoint of
itself, that is, A∗ = A, is called a self-adjoint operator. ♦

Linear transformation A : Rn → Rn is self-adjoint iff

〈Ax , y〉 = 〈x ,Ay〉 ∀ (x , y) ∈ Rn × Rn.
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Spectral/diagonalization theorem

Theorem

Let A : Rn → Rn be a self-adjoint operator. Then there exists real
numbers λ1, . . . , λn and an orthonormal basis {u1, . . . , un} such
that

Ax =
n∑

i=1

λi 〈x , ui 〉ui , x ∈ Rn.
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Proof involves the following steps

A has an eigenvalue.

Every eigenvalue is real.

Take all eigenvalues λ1, . . . , λk and consider

S = N(A− λ1I )⊕ · · · ⊕ N(A− λk).

Show that S⊥ = {0}.
Rn = S

Take orthonormal basis {u(i)1 , . . . , u
(i)
n } of of N(A− λi I ), and

{u1, . . . , un} =
k⋃

i=1

{u(i)1 , . . . , u
(i)
n }.

M. T. Nair SVD



If [A] is the matrix representation of A with respect to the
orthonormal basis {u1, . . . , un}, then writing u1, . . . , un as
column vectors, we obtain

[A] = UTDU,

where

U = [u1, . . . , un], D = diag(λ1, . . . , λn).

M. T. Nair SVD



Singular value decomposition (SVD)

Let A : Rn → Rm be a linear transformation. Then

A∗A : Rn → Rn

is a self-adjoint operator. Indeed, for every x , y ∈ Rn,

〈x ,A∗Ay〉 = 〈Ax ,Ay〉 = 〈Ay ,Ax〉 = 〈y ,A∗Ax〉 = 〈A∗Ax , y〉.

Hence
(A∗A)∗ = A∗A.

Therefore, by spectral theorem, there exist real numbers λ1, . . . , λn
and an orthonormal basis {u1, . . . , un} for Rn such that

A∗Ax =
n∑

i=1

λi 〈x , ui 〉ui , x ∈ Rn.
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In this case, A∗Auj = λjuj so that

λj = 〈uj , λjuj〉 = 〈uj ,A∗Auj〉 = 〈Auj ,Auj〉 ≥ 0

and
λj = 0 ⇐⇒ Auj = 0.

Hence, we assume, without loss of generality,

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Let
k := max{j : λj > 0}.

Then we have

A∗Ax =
k∑

i=1

λi 〈x , ui 〉ui , x ∈ Rn.

Now, let

σj =
√
λj , vj =

Auj
σj

, j = 1, . . . , k.
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{v1, . . . , vk} is an orthonormal set:

〈vi , vj〉 =
1

σiσj
〈Aui ,Auj〉 =

1

σiσj
〈ui ,A∗Auj〉 =

σ2j
σiσj
〈ui , uj〉 = δij .

Since x =
∑n

i=1〈x , ui 〉ui , we have

Ax =
n∑

i=1

〈x , ui 〉Aui .

Since, λi = 0 ⇐⇒ A∗Aui = 0, we have

Ax =
k∑

i=1

〈x , ui 〉Aui =
k∑

i=1

σi 〈x , ui 〉vi

Thus, we have proved the following theorems:
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Theorem

(SVD) If A : Rn → Rm is a non-zero linear transformation, then
there exist orthonormal sets {u1, . . . , uk} and {v1, . . . , vk} in Rn

and Rm, respectively, and real numbers σ1, . . . , σk such that
σ1 ≥ σ2 ≥ · · · ≥ σk > 0 and

Ax =
k∑

i=1

σi 〈x , ui 〉vi , x ∈ Rn.

Theorem

(SVD) Let A ∈ Rm×n be non-zero matrix. Then there exist
U ∈ Rn×k and V ∈ Rm×k with orthonormal column n-vectors and
m-vectors, respectively, and real numbers σ1, . . . , σk with
σ1 ≥ σ2 ≥ · · · ≥ σk > 0 such that

A = UTΣV , Σ := diag(σ1, . . . , σk).

M. T. Nair SVD



Theorem

(SVD) If A : Rn → Rm is a non-zero linear transformation, then
there exist orthonormal sets {u1, . . . , uk} and {v1, . . . , vk} in Rn

and Rm, respectively, and real numbers σ1, . . . , σk such that
σ1 ≥ σ2 ≥ · · · ≥ σk > 0 and

Ax =
k∑

i=1

σi 〈x , ui 〉vi , x ∈ Rn.

Theorem

(SVD) Let A ∈ Rm×n be non-zero matrix. Then there exist
U ∈ Rn×k and V ∈ Rm×k with orthonormal column n-vectors and
m-vectors, respectively, and real numbers σ1, . . . , σk with
σ1 ≥ σ2 ≥ · · · ≥ σk > 0 such that

A = UTΣV , Σ := diag(σ1, . . . , σk).

M. T. Nair SVD



Moore-Penrose inverse

Let A : Rn → Rm be a linear transformation with SVD

Ax =
k∑

i=1

σi 〈x , ui 〉vi , x ∈ Rn.

Then we have

R(A) = span{v1, . . . , vk}, N(A)⊥ = span{u1, . . . , uk}.

For y ∈ Rm, let

x† :=
k∑

i=1

〈y , vi 〉
σi

ui .

Then we have

Ax† :=
k∑

i=1

〈y , vi 〉
σi

Aui =
k∑

i=1

〈y , vi 〉vi = Py ,

where P : Rm → Rm is the orthogonal projection onto R(A).

M. T. Nair SVD
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R(A) = span{v1, . . . , vk}, N(A)⊥ = span{u1, . . . , uk}.

For y ∈ Rm, let

x† :=
k∑

i=1

〈y , vi 〉
σi

ui .

Then we have

Ax† :=
k∑

i=1

〈y , vi 〉
σi

Aui =
k∑

i=1

〈y , vi 〉vi = Py ,

where P : Rm → Rm is the orthogonal projection onto R(A).
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Hence,
‖Ax† − y‖ = ‖Py − y‖ = inf

x∈Rn
‖Ax − y‖.

Thus,

x† is a least-square solution of the equation

Ax = y .

Among all the least-square solutions, x† has the least norm,
and it is the only one having the least norm.

This follows from the fact that x† ∈ N(A)⊥ and using
projection theorem.
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Definition
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We observe that,

A†Ax =
k∑

i=1

〈Ax , vi 〉
σi

ui =
k∑

i=1

〈x ,A∗vi 〉
σi

ui =
k∑

i=1

〈x , ui 〉ui = Qx ,

so that
A†A = Q,

where Q : Rn → Rn is the orthogonal projection onto N(A)⊥.

In particular, if A in injective, then n ≤ m and k = n so that

A†A = IRn .

If n = m and A is injective, then it is bijective and A† = A−1.
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Effect of data erros

Let A : Rn → Rm be a linear transformation with SVD

Ax =
k∑

i=1

σi 〈x , ui 〉vi , x ∈ Rn.

Then we have

A†y =
k∑

i=1

〈y , vi 〉
σi

ui , y ∈ Rm.

Thus, for y , ỹ ∈ Rm, we have

A†y − A†ỹ =
k∑

i=1

〈y − ỹ , vi 〉
σi

ui

so that

‖A†y − A†ỹ‖2 =
k∑

i=1

|〈y − ỹ , vi 〉|2

σ2i
≥ |〈y − ỹ , vk〉|2

σ2k
.
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In particular, if
ỹ = y +

√
σkvk

then we have

‖ỹ − y‖ =
√
σk but ‖A†y − A†ỹ‖ =

1√
σk
.

A small error in the data can produce large error in the
solution.
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An illustration

Example

For α 6= 0, let

A =

[
α 0
0 0

]
, x =

[
x1
x2

]
, b =

[
b1
b2

]
,

Then
‖Ax − b‖2 = |αx1 − b1|2 + |b2|2.

Hence, inf ‖Ax − b‖ is attained at x =

[
b1/α
x2

]
and for this x ,

‖x‖2 = |b1/α|2 + |x2|2 is least for x2 = 0. Hence,

x† =

[
b1/α

0

]
, A† =

[
1/α 0

0 0

]
, A†A =

[
1 0
0 0

]
.

‖x† − x̃†‖ = |b1 − b̃1|/α can be large for small |b1 − b̃1|.
♦M. T. Nair SVD



SVD in infinite dimensional setting

Let H1 and H2 be Hilbert spaces.

Let {u1, u2, . . .} and {v1, v2, . . .} be orthonormal sets in H1 and
H2, respectively. Let (σn) be a sequence of positive real numbers
such that

σn → 0 and σ1 ≥ σ2 ≥ · · · .

Let T : H1 → H2 be defined by

Tx =
∞∑
j=1

σj〈x , uj〉vj , x ∈ H1. (∗)
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T is a bounded linear operator, since

∞∑
j=1

σ2j |〈x , uj〉|2 ≤ σ21‖x‖2.

In fact,
σn = ‖Tvn‖ ≤ ‖T‖ ≤ σ1 ∀ n ∈ N.

Hence
‖T‖ = σ1.
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T is one-one iff {u1, u2, . . .} is an orthonormal basis.

T is not onto:

Since σn → 0, for each k ∈ N, there exists nk ∈ N such that
σnk < 1/k. Let

y =
∞∑
j=1

σnj vnj .

Since
∑∞

j=1 |σnj |2 <∞, y ∈ H2.

Now, for x ∈ H1, if Tx = y , then we must have

〈Tx , vnj 〉 = 〈y , vnj 〉, ∀ j ∈ N,

i.e., σnj 〈x , unj 〉 = σnj for all j ∈ N

⇒ 〈x , unj 〉 = 1 ∀ j ∈ N,

which is not possible, since 〈x , un〉 → 0.
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Thus, the equation
Tx = y

need not have a solution.

Let y ∈ R(T ) and Tx = y . For n ∈ N, let

yn := y +
√
σnvn, xn = x + un/

√
σn.

Then Txn = yn. Note that

‖yn − y‖ =
√
σn → 0 but ‖xn − x‖ =

1√
σn
→∞.

Thus:

The problem of solving the equation Tx = y is ill-posed2 .

2M.T. Nair: M.T. Nair: Functional Analysis: A First Course, PHI-Learning
2002, Second Edition 2021 (Chapter 14)
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For n ∈ N, let

Tnx =
n∑

j=1

σj〈x , uj〉vj , x ∈ H1.

Then Tn : H1 → H2 is a finite rank bounded operator and we have

‖(T − Tn)x‖2 =
∞∑

j=n+1

σ2j |〈x , uj〉|2 ≤ σ2n+1‖x‖2,

Hence, ‖T − Tn‖ ≤ σn+1 → 0.

(Tn) is a norm approximation of T .

T is a compact operator.
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Definition

A bounded linear operator T : H1 → H2 is called a compact
operator if closure of {Tx : ‖x‖ ≤ 1} is compact in H2. ♦

Question: Does every compact operator have a representation of
the form

Tx =
∞∑
j=1

σj〈x , uj〉vj , x ∈ H1.?

The answer is in the affirmative, thanks to spectral theorem for a
compact self-adjoint operators3, 4 .

3M.T. Nair, Functional Analysis: A First Course, Second Edition PHI
Learning, New Delhi, 2021.

4M.T. Nair, Linear Operator Equations: Approximation and Regularization,
Second Edition (Under preparation), World Scientific.
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Adjoint of bounded operators

As a consequence of Riesz representation theorem, we have:

Theorem

For every bounded operator T : H1 → H2, there exists a unique
bounded linear operator T ∗ : H2 → H1 such that

〈Tx , y〉H2 = 〈x ,T ∗y〉H1 ∀ (x , y) ∈ H1 ×H2.

Definition

The operator T ∗ defined in the last theorem is called the
adjoint of T .

A bounded operator A : H → H on a Hilbert space H called a
self-adjoint operator if A∗ = A, that is,

〈Ax , y〉 = 〈x ,Ay〉 ∀ x , y ∈ H. ♦
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Theorem

(Spectral theorem) If A : H → H is a compact self-adjoint
operator of infinite rank, then there exist an orthonormal set
{u1, u2, . . .} in H and a sequence (λn) of real numbers with
λn → 0 such that

Ax =
∞∑
j=1

λj〈x , uj〉uj ∀ x ∈ H.
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SVD

Now, suppose T : H1 → H2 be a compact operator.

Then A := T ∗T is a compact, positive, self-adjoint operator on
H1. Let

T ∗Tx =
∞∑
j=1

λj〈x , uj〉uj ∀ x ∈ H1

be the spectral representation of T ∗T . Let

vj =
Tuj
σj
, σj :=

√
λj , j ∈ N.

We observe that

〈vi , vj〉 =
1

σiσj
〈Tui ,Tuj〉 =

1

σiσj
〈ui ,T ∗Tuj〉 =

σ2j
σiσj
〈ui , uj〉 = δij .

Thus,

{vj : j ∈ N} is an orthonormal basis of R(T ).
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Note that, for x ∈ H1,

Tx = 0 ⇐⇒ T ∗Tx = 0 ⇐⇒ 〈x , uj〉 = 0 ∀ j ∈ N.

From this, it can be deduced that

{uj : j ∈ N} is an orthonormal basis of N(T )⊥.

Hence, for every x ∈ H1,

x = u +
∞∑
j=1

〈x , uj〉uj with u ∈ N(T )

so that

Tx =
∞∑
j=1

〈x , uj〉Tuj =
∞∑
j=1

σj〈x , uj〉vj .

Thus, we have proved the following theorem.
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The SVD

Theorem

(SVD) If T : H1 → H2 is a compact operator of infinite rank, then

Tx =
∞∑
j=1

σj〈x , uj〉vj ∀ x ∈ H1,

where {u1, u2, . . .} and {v1, v2, . . .} are orthonormal bases of
N(T )⊥ and R(T ), respectively and (σn) is a sequence of positive
real numbers with σn → 0.
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Generalized solution and Moore-Penrose inverse

Let us assume, without loss of generality, that

σ1 ≥ σ2 ≥ · · · .

For y ∈ H2,

x† :=
∞∑
j=1

〈y , vj〉
σj

uj

is well-defined iff5

∞∑
j=1

|〈y , vj〉|2

σ2j
<∞.

Let

D :=
{
y ∈ H2 :

∞∑
j=1

|〈y , vj〉|2

σ2j
<∞

}
.

5called Piccard condition
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For y ∈ D, we have

Tx† =
∞∑
j=1

〈y , vj〉uj = Py ,

where P : H2 → H2 is the orthogonal projection6 onto R(T ).

Hence,
‖Tx† − y‖ = ‖Py − y‖ = inf

x∈H1

‖Tx − y‖.

Among all the least-square solutions, x† has the least norm,
and it is the only one having the least norm.

This is the consequence of the fact that x† ∈ N(T )⊥.

6since {vn : n ∈ N} is an onb of R(T ).
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Definition

The map T † : D → H1 defined by

T †y :=
∞∑
j=1

〈y , vj〉
σj

uj , y ∈ D

is called the Moore-Penrose invere of T . ♦

T † is a closed densely defined unbounded operator.

Remark: Morre-Penrose inverse can also be defined for a general
bounded operator between Hilbert spaces7. In such case, it can be
shown that T † is a bounded operator iff R(T ) is closed. In the
case under discussion, we already having an operator with
non-closed range.

7M.T. Nair, Linear Operator Equations: Approximation and Regularization,
Second Edition (Under preparation), World Scientific.
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Ill-Posedness of Tx = y

Now, if y , ỹ ∈ D, then

T †(y − ỹ) =
∞∑
i=1

〈y − ỹ , vi 〉
σi

ui .

Hence,

‖T †(y − ỹ)‖2 =
∞∑
i=1

|〈y − ỹ , vi 〉|2

σ2i
≥ |〈y − ỹ , vk〉|2

σ2k
∀ k .

In particular, if
yk = y +

√
σkvk

then we have

‖yk − y‖ =
√
σk → 0 as k →∞

but

‖T †y − T †yk‖ =
1√
σk
→∞ as k →∞.
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∞∑
i=1
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∞∑
i=1
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BHCP

Consider the heat equation

∂u

∂t
(s, t) = c2

∂2u

∂s2
(s, t), 0 < s < `, t > 0. (1)

If f0 ∈ L2[0, `], and

u(·, t) :=
∞∑
n=1

e−λ
2
nt〈f0, ϕn〉ϕn, (2)

where

λn :=
nπc

`
, ϕn(s) :=

√
2

`
sin(λns),

then u(·, ·) satisfies (1) with

u(s, 0) = f (s) a.e..
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BHCP:

The backward heat conduction problem:

Given g ∈ L2[0, `], does there exist u(·, ·) satisfying (1) and

u(·, τ) = g ?

The answer is in the affirmative iff∑
n=1

e2λ
2
n(τ−t)|〈g , ϕn〉|2 <∞. (3)

The function g has to be too smooth!
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Proof.

From (2),

〈g , ϕn〉 = 〈u(·, τ), ϕn〉 = e−λ
2
nτ 〈f0, ϕn〉

so that
〈f0, ϕn〉 = eλ

2
nτ 〈g , ϕn〉

so that

u(·, t) :=
∞∑
n=1

eλ
2
n(τ−t)〈g , ϕn〉ϕn. (4)

⇒
∞∑
n=1

e2λ
2
n(τ−t)|〈g , ϕn〉|2 <∞.
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The relations (3) and (4) implies
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Integral equations of the first kind

Consider the integral equation of the first kind,∫ b

a
k(s, t)x(t) dt = y(s), a ≤ s ≤ b. (∗)

If k(·, ·) ∈ L2([a, b]× [a, b]), then K : L2[a, b]→ L2[a, b],
defined by

(Kx)(s) :=

∫ b

a
k(s, t)x(t)] dt, x ∈ L2[a, b], a ≤ s ≤ b,

is a compact operator.

K is of finite rank iff k(·, ·) is a degenerate kernel.

If k(·, ·) is non-degenerate, then the problem of solving (∗) is
ill-posed.
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Ill-Posed Integral Equations

Ill-Posed integral equations appear in many applications.

For example:

Computerized tomography, [Radon transform]

Geological prospecting, [Abel integral equations]

Inverse heat conduction problems, [with smooth kernel]
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Applications

Computerized Tomography: Radon transform

(Rωf )(s) =

∫ α

−α
f (sω + tω⊥)dt = g(s).

f (·) is the ”inhomogeneity” or “attenuation coefficient”,
g(·) is the observation.

Geological prospecting: Abel integral equation∫ ∞
s

tx(t)√
t2 − s2

dt = y(s).

x(·) is the density of mineral deposit;
y(·): is the gravimetric measurements
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Inverse heat conduction problems: BHCP∫ `

0
k(s, ξ)f0(ξ)dξ = g(s),

k(s, ξ) :=
∞∑
n=1

e−λ
2
n(τ−t0) sin

nπs

`
sin

nπξ

`
, λn =

nπc

`
.

g := u(·, τ): temperature at time τ ;
f0 := u(·, t0): temperature at time t0.
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How to deal with ill-posed and ill-conditioned problems?

Regularization theory8 is the answer!

There are many books on inverse and ill-posed problems.

The journals

Inverse Problems,
Journal of Inverse and Ill-Posed Problems,
Inverse Problems in Science and Engineering,
Inverse Problems and Imaging

are some of the journals exclusively devoted to this area.

8M.T. Nair, Linear Operator Equations: Approximation and Regularization,
World Scientific 2009 (Second Edition - Under preparation)
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for your attention!
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