SVD in finite and Infinite dimensional settings

M. T. Nair

Weakly Colloquium, BITS Pilani, Goa Campus
December 6, 2022

- Basic notions:
(1) Orthogonality in \mathbb{R}^{n}.
(2) Projection theorem in \mathbb{R}^{n}
(3) Adjoint of a linear transformation
- Spectral/diagonalization theorem
- SVD in f.d. setting.
- Moore-Penrose inverse in f.d. setting
- Effect of data errors while solving $A x=b$.
- Compact operators between Hilbert spaces
- Spectral representation of compact operators
- SVD for compact operators
- Generalized solution and Moore-Penrose inverse
- III-posedness of compact operator equations
- BHCP
- III-posedness of Fredholm integral equations \& Applications

SVD in finite dimensional setting

${ }^{1}$ M.T. Nair \& A. Singh: Linear Algebra, Springer 2018.

SVD in finite dimensional setting

Some basic notions ${ }^{1}$

${ }^{1}$ M.T. Nair \& A. Singh: Linear Algebra, Springer 2018.

SVD in finite dimensional setting

Some basic notions ${ }^{1}$

- Usual inner product in \mathbb{R}^{d} :

$$
\langle x, y\rangle=\sum_{i=1}^{d} x(j) y(j), \quad x, y \in \mathbb{R}^{d}
$$

${ }^{1}$ M.T. Nair \& A. Singh: Linear Algebra, Springer 2018.

SVD in finite dimensional setting

Some basic notions ${ }^{1}$

- Usual inner product in \mathbb{R}^{d} :

$$
\langle x, y\rangle=\sum_{i=1}^{d} x(j) y(j), \quad x, y \in \mathbb{R}^{d}
$$

- Usual norm on \mathbb{R}^{d} :

$$
\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{\sum_{i=1}^{d}|x(i)|^{2}}
$$

- For $x, y \in \mathbb{R}^{d}, x$ is orthogonal to y if $\langle x, y\rangle=0$.
${ }^{1}$ M.T. Nair \& A. Singh: Linear Algebra, Springer 2018.

SVD in finite dimensional setting

Some basic notions ${ }^{1}$

- Usual inner product in \mathbb{R}^{d} :

$$
\langle x, y\rangle=\sum_{i=1}^{d} x(j) y(j), \quad x, y \in \mathbb{R}^{d}
$$

- Usual norm on \mathbb{R}^{d} :

$$
\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{\sum_{i=1}^{d}|x(i)|^{2}}
$$

- For $x, y \in \mathbb{R}^{d}, x$ is orthogonal to y if $\langle x, y\rangle=0$.
- $S \subseteq \mathbb{R}^{d}$ is an orthonormal set if for every $x, y \in S$,

$$
\langle x, y\rangle= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

${ }^{1}$ M.T. Nair \& A. Singh: Linear Algebra, Springer 2018.

- Every orthonormal set is linearly independent.
- Every orthonormal set is linearly independent.
- (Gram-Schmidt) Given any basis $\left\{u_{1}, \ldots, u_{d}\right\}$ of \mathbb{R}^{d} there exists an orthonormal set $\left\{v_{1}, \ldots, v_{d}\right\}$ such that

$$
\operatorname{span}\left\{u_{1}, \ldots, u_{j}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}, \quad j=1, \ldots, d
$$

- Every orthonormal set is linearly independent.
- (Gram-Schmidt) Given any basis $\left\{u_{1}, \ldots, u_{d}\right\}$ of \mathbb{R}^{d} there exists an orthonormal set $\left\{v_{1}, \ldots, v_{d}\right\}$ such that

$$
\operatorname{span}\left\{u_{1}, \ldots, u_{j}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}, \quad j=1, \ldots, d
$$

- In particular, \mathbb{R}^{d} has bases consisting of orthonormal vectors.
- Every orthonormal set is linearly independent.
- (Gram-Schmidt) Given any basis $\left\{u_{1}, \ldots, u_{d}\right\}$ of \mathbb{R}^{d} there exists an orthonormal set $\left\{v_{1}, \ldots, v_{d}\right\}$ such that

$$
\operatorname{span}\left\{u_{1}, \ldots, u_{j}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}, \quad j=1, \ldots, d
$$

- In particular, \mathbb{R}^{d} has bases consisting of orthonormal vectors.
- (Projection theorem) If $S \subseteq \mathbb{R}^{d}$ is a subspace, then

$$
\mathbb{R}^{d}=S+S^{\perp}
$$

- Every orthonormal set is linearly independent.
- (Gram-Schmidt) Given any basis $\left\{u_{1}, \ldots, u_{d}\right\}$ of \mathbb{R}^{d} there exists an orthonormal set $\left\{v_{1}, \ldots, v_{d}\right\}$ such that

$$
\operatorname{span}\left\{u_{1}, \ldots, u_{j}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}, \quad j=1, \ldots, d
$$

- In particular, \mathbb{R}^{d} has bases consisting of orthonormal vectors.
- (Projection theorem) If $S \subseteq \mathbb{R}^{d}$ is a subspace, then

$$
\mathbb{R}^{d}=S+S^{\perp}
$$

- $x=u+v, \quad u \in S, \quad v \in S^{\perp}$ implies

$$
\|x-u\|=\inf _{w \in S}\|x-w\|
$$

Adjoint

Adjoint

Theorem

For every linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, there exists a unique linear transformation $A^{*}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ satisfying

$$
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle \quad \forall x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m} .
$$

Proof.

Let $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ be orthonormal bases of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. For $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$, we have

$$
x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle u_{i}, \quad y=\sum_{j=1}^{n}\left\langle y, v_{j}\right\rangle v_{j} .
$$

Proof.

Let $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ be orthonormal bases of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. For $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$, we have

$$
x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle u_{i}, \quad y=\sum_{j=1}^{n}\left\langle y, v_{j}\right\rangle v_{j} .
$$

Then,

$$
\begin{aligned}
\langle A x, y\rangle & =\sum_{j=1}^{n} \sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle\left\langle A u_{i}, v_{j}\right\rangle\left\langle y, v_{j}\right\rangle \\
& =\left\langle x, \sum_{j=1}^{n} \sum_{i=1}^{n}\left\langle A u_{i}, v_{j}\right\rangle\left\langle y, v_{j}\right\rangle u_{i}\right\rangle=\left\langle x, A^{*} y\right\rangle
\end{aligned}
$$

Proof.

Let $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ be orthonormal bases of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. For $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$, we have

$$
x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle u_{i}, \quad y=\sum_{j=1}^{n}\left\langle y, v_{j}\right\rangle v_{j} .
$$

Then,

$$
\begin{aligned}
\langle A x, y\rangle & =\sum_{j=1}^{n} \sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle\left\langle A u_{i}, v_{j}\right\rangle\left\langle y, v_{j}\right\rangle \\
& =\left\langle x, \sum_{j=1}^{n} \sum_{i=1}^{n}\left\langle A u_{i}, v_{j}\right\rangle\left\langle y, v_{j}\right\rangle u_{i}\right\rangle=\left\langle x, A^{*} y\right\rangle, \\
A^{*} y & :=\sum_{j=1}^{n} \sum_{i=1}^{n}\left\langle A u_{i}, v_{j}\right\rangle\left\langle y, v_{j}\right\rangle u_{i}, \quad y \in \mathbb{R}^{m} .
\end{aligned}
$$

Proof continues.

Then, $A^{*}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation and it satisfies

$$
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle \quad \forall x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m} .
$$

If $\tilde{A}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation satisfying

$$
\langle A x, y\rangle=\langle x, \tilde{A} y\rangle \quad \forall x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}
$$

then we have

$$
\langle x, \tilde{A} y\rangle=\left\langle x, A^{*} y\right\rangle \quad \forall x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}
$$

so that $\tilde{A}=A^{*}$.

Definition

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then the unique linear transformation $A^{*}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ obtained by Theorem 1 is called the adjoint of A.

Definition

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then the unique linear transformation $A^{*}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ obtained by Theorem 1 is called the adjoint of A.

Definition

A linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which is the adjoint of itself, that is, $A^{*}=A$, is called a self-adjoint operator.

Definition

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then the unique linear transformation $A^{*}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ obtained by Theorem 1 is called the adjoint of A.

Definition

A linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which is the adjoint of itself, that is, $A^{*}=A$, is called a self-adjoint operator.

- Linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is self-adjoint iff

$$
\langle A x, y\rangle=\langle x, A y\rangle \quad \forall(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

Spectral/diagonalization theorem

Spectral/diagonalization theorem

Theorem

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a self-adjoint operator. Then there exists real numbers $\lambda_{1}, \ldots, \lambda_{n}$ and an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ such that

$$
A x=\sum_{i=1}^{n} \lambda_{i}\left\langle x, u_{i}\right\rangle u_{i}, \quad x \in \mathbb{R}^{n}
$$

- A has an eigenvalue.
- Every eigenvalue is real.
- Take all eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ and consider

$$
S=N\left(A-\lambda_{1} I\right) \oplus \cdots \oplus N\left(A-\lambda_{k}\right)
$$

- Show that $S^{\perp}=\{0\}$.
- $\mathbb{R}^{n}=S$
- Take orthonormal basis $\left\{u_{1}^{(i)}, \ldots, u_{n}^{(i)}\right\}$ of of $N\left(A-\lambda_{i} l\right)$, and

$$
\left\{u_{1}, \ldots, u_{n}\right\}=\bigcup_{i=1}^{k}\left\{u_{1}^{(i)}, \ldots, u_{n}^{(i)}\right\}
$$

- If $[A]$ is the matrix representation of A with respect to the orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$, then writing u_{1}, \ldots, u_{n} as column vectors, we obtain

$$
[A]=U^{T} D U
$$

where

$$
U=\left[u_{1}, \ldots, u_{n}\right], \quad D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Singular value decomposition (SVD)

Singular value decomposition (SVD)

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then

$$
A^{*} A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is a self-adjoint operator. Indeed, for every $x, y \in \mathbb{R}^{n}$,

$$
\left\langle x, A^{*} A y\right\rangle=\langle A x, A y\rangle=\langle A y, A x\rangle=\left\langle y, A^{*} A x\right\rangle=\left\langle A^{*} A x, y\right\rangle .
$$

Singular value decomposition (SVD)

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then

$$
A^{*} A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is a self-adjoint operator. Indeed, for every $x, y \in \mathbb{R}^{n}$,

$$
\left\langle x, A^{*} A y\right\rangle=\langle A x, A y\rangle=\langle A y, A x\rangle=\left\langle y, A^{*} A x\right\rangle=\left\langle A^{*} A x, y\right\rangle .
$$

Hence

$$
\left(A^{*} A\right)^{*}=A^{*} A
$$

Singular value decomposition (SVD)

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then

$$
A^{*} A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is a self-adjoint operator. Indeed, for every $x, y \in \mathbb{R}^{n}$,

$$
\left\langle x, A^{*} A y\right\rangle=\langle A x, A y\rangle=\langle A y, A x\rangle=\left\langle y, A^{*} A x\right\rangle=\left\langle A^{*} A x, y\right\rangle
$$

Hence

$$
\left(A^{*} A\right)^{*}=A^{*} A
$$

Therefore, by spectral theorem, there exist real numbers $\lambda_{1}, \ldots, \lambda_{n}$ and an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ for \mathbb{R}^{n} such that

$$
A^{*} A x=\sum_{i=1}^{n} \lambda_{i}\left\langle x, u_{i}\right\rangle u_{i}, \quad x \in \mathbb{R}^{n} .
$$

In this case, $A^{*} A u_{j}=\lambda_{j} u_{j}$ so that

$$
\lambda_{j}=\left\langle u_{j}, \lambda_{j} u_{j}\right\rangle=\left\langle u_{j}, A^{*} A u_{j}\right\rangle=\left\langle A u_{j}, A u_{j}\right\rangle \geq 0
$$

and

$$
\lambda_{j}=0 \Longleftrightarrow A u_{j}=0
$$

In this case, $A^{*} A u_{j}=\lambda_{j} u_{j}$ so that

$$
\lambda_{j}=\left\langle u_{j}, \lambda_{j} u_{j}\right\rangle=\left\langle u_{j}, A^{*} A u_{j}\right\rangle=\left\langle A u_{j}, A u_{j}\right\rangle \geq 0
$$

and

$$
\lambda_{j}=0 \Longleftrightarrow A u_{j}=0
$$

Hence, we assume, without loss of generality,

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0
$$

Let

$$
k:=\max \left\{j: \lambda_{j}>0\right\} .
$$

In this case, $A^{*} A u_{j}=\lambda_{j} u_{j}$ so that

$$
\lambda_{j}=\left\langle u_{j}, \lambda_{j} u_{j}\right\rangle=\left\langle u_{j}, A^{*} A u_{j}\right\rangle=\left\langle A u_{j}, A u_{j}\right\rangle \geq 0
$$

and

$$
\lambda_{j}=0 \Longleftrightarrow A u_{j}=0
$$

Hence, we assume, without loss of generality,

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0
$$

Let

$$
k:=\max \left\{j: \lambda_{j}>0\right\} .
$$

Then we have

$$
A^{*} A x=\sum_{i=1}^{k} \lambda_{i}\left\langle x, u_{i}\right\rangle u_{i}, \quad x \in \mathbb{R}^{n}
$$

In this case, $A^{*} A u_{j}=\lambda_{j} u_{j}$ so that

$$
\lambda_{j}=\left\langle u_{j}, \lambda_{j} u_{j}\right\rangle=\left\langle u_{j}, A^{*} A u_{j}\right\rangle=\left\langle A u_{j}, A u_{j}\right\rangle \geq 0
$$

and

$$
\lambda_{j}=0 \Longleftrightarrow A u_{j}=0
$$

Hence, we assume, without loss of generality,

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0
$$

Let

$$
k:=\max \left\{j: \lambda_{j}>0\right\} .
$$

Then we have

$$
A^{*} A x=\sum_{i=1}^{k} \lambda_{i}\left\langle x, u_{i}\right\rangle u_{i}, \quad x \in \mathbb{R}^{n}
$$

Now, let

$$
\sigma_{j}=\sqrt{\lambda}_{j}, \quad v_{j}=\frac{A u_{j}}{\sigma_{j}}, \quad j=1, \ldots, k
$$

- $\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal set:
- $\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal set:

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle A u_{i}, A u_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, A^{*} A u_{j}\right\rangle=\frac{\sigma_{j}^{2}}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j} .
$$

- $\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal set:

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle A u_{i}, A u_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, A^{*} A u_{j}\right\rangle=\frac{\sigma_{j}^{2}}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j} .
$$

Since $x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle u_{i}$, we have

$$
A x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle A u_{i}
$$

Since, $\lambda_{i}=0 \Longleftrightarrow A^{*} A u_{i}=0$, we have

- $\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal set:

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle A u_{i}, A u_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, A^{*} A u_{j}\right\rangle=\frac{\sigma_{j}^{2}}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j} .
$$

Since $x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle u_{i}$, we have

$$
A x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle A u_{i}
$$

Since, $\lambda_{i}=0 \Longleftrightarrow A^{*} A u_{i}=0$, we have

$$
A x=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle A u_{i}=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}
$$

- $\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal set:

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle A u_{i}, A u_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, A^{*} A u_{j}\right\rangle=\frac{\sigma_{j}^{2}}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j} .
$$

Since $x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle u_{i}$, we have

$$
A x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle A u_{i}
$$

Since, $\lambda_{i}=0 \Longleftrightarrow A^{*} A u_{i}=0$, we have

$$
A x=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle A u_{i}=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}
$$

Thus, we have proved the following theorems:

Theorem

(SVD) If $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a non-zero linear transformation, then there exist orthonormal sets $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and real numbers $\sigma_{1}, \ldots, \sigma_{k}$ such that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}>0$ and

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Theorem

(SVD) If $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a non-zero linear transformation, then there exist orthonormal sets $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and real numbers $\sigma_{1}, \ldots, \sigma_{k}$ such that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}>0$ and

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Theorem

(SVD) Let $A \in \mathbb{R}^{m \times n}$ be non-zero matrix. Then there exist $U \in \mathbb{R}^{n \times k}$ and $V \in \mathbb{R}^{m \times k}$ with orthonormal column n-vectors and m-vectors, respectively, and real numbers $\sigma_{1}, \ldots, \sigma_{k}$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}>0$ such that

$$
A=U^{T} \Sigma V, \quad \Sigma:=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)
$$

Moore-Penrose inverse

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with SVD

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Moore-Penrose inverse

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with SVD

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Then we have

$$
R(A)=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}, \quad N(A)^{\perp}=\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\} .
$$

For $y \in \mathbb{R}^{m}$, let

$$
x^{\dagger}:=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with SVD

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Then we have

$$
R(A)=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}, \quad N(A)^{\perp}=\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\} .
$$

For $y \in \mathbb{R}^{m}$, let

$$
x^{\dagger}:=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

Then we have

$$
A x^{\dagger}:=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\sigma_{i}} A u_{i}=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}=P y,
$$

where $P: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is the orthogonal projection onto $R(A)$.

Hence,

$$
\left\|A x^{\dagger}-y\right\|=\|P y-y\|=\inf _{x \in \mathbb{R}^{n}}\|A x-y\| .
$$

Thus,

- x^{\dagger} is a least-square solution of the equation

$$
A x=y
$$

- Among all the least-square solutions, x^{\dagger} has the least norm, and it is the only one having the least norm.

Hence,

$$
\left\|A x^{\dagger}-y\right\|=\|P y-y\|=\inf _{x \in \mathbb{R}^{n}}\|A x-y\| .
$$

Thus,

- x^{\dagger} is a least-square solution of the equation

$$
A x=y
$$

- Among all the least-square solutions, x^{\dagger} has the least norm, and it is the only one having the least norm.
This follows from the fact that $x^{\dagger} \in N(A)^{\perp}$ and using projection theorem.

Definition

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with SVD

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Definition

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with SVD

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Then the linear transformation $A^{\dagger}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ defined by

$$
A^{\dagger} y=x^{\dagger}:=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

is called the Moore-Penrose inverse of A.

We observe that,

$$
A^{\dagger} A x=\sum_{i=1}^{k} \frac{\left\langle A x, v_{i}\right\rangle}{\sigma_{i}} u_{i}=\sum_{i=1}^{k} \frac{\left\langle x, A^{*} v_{i}\right\rangle}{\sigma_{i}} u_{i}=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}=Q x
$$

so that

$$
A^{\dagger} A=Q
$$

where $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the orthogonal projection onto $N(A)^{\perp}$.

We observe that,

$$
A^{\dagger} A x=\sum_{i=1}^{k} \frac{\left\langle A x, v_{i}\right\rangle}{\sigma_{i}} u_{i}=\sum_{i=1}^{k} \frac{\left\langle x, A^{*} v_{i}\right\rangle}{\sigma_{i}} u_{i}=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}=Q x
$$

so that

$$
A^{\dagger} A=Q
$$

where $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the orthogonal projection onto $N(A)^{\perp}$. In particular, if A in injective, then $n \leq m$ and $k=n$ so that

$$
A^{\dagger} A=I_{\mathbb{R}^{n}}
$$

We observe that,

$$
A^{\dagger} A x=\sum_{i=1}^{k} \frac{\left\langle A x, v_{i}\right\rangle}{\sigma_{i}} u_{i}=\sum_{i=1}^{k} \frac{\left\langle x, A^{*} v_{i}\right\rangle}{\sigma_{i}} u_{i}=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}=Q x
$$

so that

$$
A^{\dagger} A=Q
$$

where $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the orthogonal projection onto $N(A)^{\perp}$. In particular, if A in injective, then $n \leq m$ and $k=n$ so that

$$
A^{\dagger} A=I_{\mathbb{R}^{n}}
$$

- If $n=m$ and A is injective, then it is bijective and $A^{\dagger}=A^{-1}$.

Effect of data erros

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with SVD

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with SVD

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Then we have

$$
A^{\dagger} y=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\sigma_{i}} u_{i}, \quad y \in \mathbb{R}^{m}
$$

Thus, for $y, \tilde{y} \in \mathbb{R}^{m}$, we have

$$
A^{\dagger} y-A^{\dagger} \tilde{y}=\sum_{i=1}^{k} \frac{\left\langle y-\tilde{y}, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

so that

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with SVD

$$
A x=\sum_{i=1}^{k} \sigma_{i}\left\langle x, u_{i}\right\rangle v_{i}, \quad x \in \mathbb{R}^{n}
$$

Then we have

$$
A^{\dagger} y=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\sigma_{i}} u_{i}, \quad y \in \mathbb{R}^{m}
$$

Thus, for $y, \tilde{y} \in \mathbb{R}^{m}$, we have

$$
A^{\dagger} y-A^{\dagger} \tilde{y}=\sum_{i=1}^{k} \frac{\left\langle y-\tilde{y}, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

so that

$$
\left\|A^{\dagger} y-A^{\dagger} \tilde{y}\right\|^{2}=\sum_{i=1}^{k} \frac{\left|\left\langle y-\tilde{y}, v_{i}\right\rangle\right|^{2}}{\sigma_{i}^{2}} \geq \frac{\left|\left\langle y-\tilde{y}, v_{k}\right\rangle\right|^{2}}{\sigma_{k}^{2}}
$$

In particular, if

$$
\tilde{y}=y+\sqrt{\sigma}_{k} v_{k}
$$

then we have

$$
\|\tilde{y}-y\|=\sqrt{\sigma}_{k} \quad \text { but } \quad\left\|A^{\dagger} y-A^{\dagger} \tilde{y}\right\|=\frac{1}{\sqrt{\sigma_{k}}}
$$

- A small error in the data can produce large error in the solution.

An illustration

Example

For $\alpha \neq 0$, let

$$
A=\left[\begin{array}{ll}
\alpha & 0 \\
0 & 0
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

Then

$$
\|A x-b\|^{2}=\left|\alpha x_{1}-b_{1}\right|^{2}+\left|b_{2}\right|^{2}
$$

Hence, $\inf \|A x-b\|$ is attained at $x=\left[\begin{array}{c}b_{1} / \alpha \\ x_{2}\end{array}\right]$ and for this x, $\|x\|^{2}=\left|b_{1} / \alpha\right|^{2}+\left|x_{2}\right|^{2}$ is least for $x_{2}=0$. Hence,

$$
x^{\dagger}=\left[\begin{array}{c}
b_{1} / \alpha \\
0
\end{array}\right], \quad A^{\dagger}=\left[\begin{array}{cc}
1 / \alpha & 0 \\
0 & 0
\end{array}\right], \quad A^{\dagger} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

- $\left\|x^{\dagger}-\tilde{x}^{\dagger}\right\|=\left|b_{1}-\tilde{b}_{1}\right| / \alpha$ can be large for small $\left|b_{1}-\tilde{b}_{1}\right|$.

SVD in infinite dimensional setting

Let \mathcal{H}_{1} and \mathcal{H}_{2} be Hilbert spaces.
Let $\left\{u_{1}, u_{2}, \ldots\right\}$ and $\left\{v_{1}, v_{2}, \ldots\right\}$ be orthonormal sets in \mathcal{H}_{1} and \mathcal{H}_{2}, respectively. Let $\left(\sigma_{n}\right)$ be a sequence of positive real numbers such that

$$
\sigma_{n} \rightarrow 0 \quad \text { and } \quad \sigma_{1} \geq \sigma_{2} \geq \cdots
$$

SVD in infinite dimensional setting

Let \mathcal{H}_{1} and \mathcal{H}_{2} be Hilbert spaces.
Let $\left\{u_{1}, u_{2}, \ldots\right\}$ and $\left\{v_{1}, v_{2}, \ldots\right\}$ be orthonormal sets in \mathcal{H}_{1} and \mathcal{H}_{2}, respectively. Let $\left(\sigma_{n}\right)$ be a sequence of positive real numbers such that

$$
\sigma_{n} \rightarrow 0 \quad \text { and } \quad \sigma_{1} \geq \sigma_{2} \geq \cdots
$$

Let $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be defined by

$$
\begin{equation*}
T_{x}=\sum_{j=1}^{\infty} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}, \quad x \in \mathcal{H}_{1} \tag{*}
\end{equation*}
$$

- T is a bounded linear operator, since

$$
\sum_{j=1}^{\infty} \sigma_{j}^{2}\left|\left\langle x, u_{j}\right\rangle\right|^{2} \leq \sigma_{1}^{2}\|x\|^{2}
$$

- T is a bounded linear operator, since

$$
\sum_{j=1}^{\infty} \sigma_{j}^{2}\left|\left\langle x, u_{j}\right\rangle\right|^{2} \leq \sigma_{1}^{2}\|x\|^{2}
$$

In fact,

$$
\sigma_{n}=\left\|T v_{n}\right\| \leq\|T\| \leq \sigma_{1} \quad \forall n \in \mathbb{N} .
$$

- T is a bounded linear operator, since

$$
\sum_{j=1}^{\infty} \sigma_{j}^{2}\left|\left\langle x, u_{j}\right\rangle\right|^{2} \leq \sigma_{1}^{2}\|x\|^{2}
$$

In fact,

$$
\sigma_{n}=\left\|T v_{n}\right\| \leq\|T\| \leq \sigma_{1} \quad \forall n \in \mathbb{N} .
$$

Hence

- T is a bounded linear operator, since

$$
\sum_{j=1}^{\infty} \sigma_{j}^{2}\left|\left\langle x, u_{j}\right\rangle\right|^{2} \leq \sigma_{1}^{2}\|x\|^{2}
$$

In fact,

$$
\sigma_{n}=\left\|T v_{n}\right\| \leq\|T\| \leq \sigma_{1} \quad \forall n \in \mathbb{N} .
$$

Hence

$$
\|T\|=\sigma_{1}
$$

- T is one-one iff $\left\{u_{1}, u_{2}, \ldots\right\}$ is an orthonormal basis.
- T is one-one iff $\left\{u_{1}, u_{2}, \ldots\right\}$ is an orthonormal basis.
- T is not onto:
- T is one-one iff $\left\{u_{1}, u_{2}, \ldots\right\}$ is an orthonormal basis.
- T is not onto:

Since $\sigma_{n} \rightarrow 0$, for each $k \in \mathbb{N}$, there exists $n_{k} \in \mathbb{N}$ such that $\sigma_{n_{k}}<1 / k$. Let

$$
y=\sum_{j=1}^{\infty} \sigma_{n_{j}} v_{n_{j}} .
$$

Since $\sum_{j=1}^{\infty}\left|\sigma_{n_{j}}\right|^{2}<\infty, y \in \mathcal{H}_{2}$.

- T is one-one iff $\left\{u_{1}, u_{2}, \ldots\right\}$ is an orthonormal basis.
- T is not onto:

Since $\sigma_{n} \rightarrow 0$, for each $k \in \mathbb{N}$, there exists $n_{k} \in \mathbb{N}$ such that $\sigma_{n_{k}}<1 / k$. Let

$$
y=\sum_{j=1}^{\infty} \sigma_{n_{j}} v_{n_{j}}
$$

Since $\sum_{j=1}^{\infty}\left|\sigma_{n_{j}}\right|^{2}<\infty, y \in \mathcal{H}_{2}$.
Now, for $x \in \mathcal{H}_{1}$, if $T x=y$, then we must have

$$
\begin{aligned}
& \qquad\left\langle T x, v_{n_{j}}\right\rangle=\left\langle y, v_{n_{j}}\right\rangle, \quad \forall j \in \mathbb{N}, \\
& \text { i.e., } \sigma_{n_{j}}\left\langle x, u_{n_{j}}\right\rangle=\sigma_{n_{j}} \text { for all } j \in \mathbb{N} \\
& \Rightarrow \quad\left\langle x, u_{n_{j}}\right\rangle=1 \quad \forall j \in \mathbb{N},
\end{aligned}
$$

which is not possible, since $\left\langle x, u_{n}\right\rangle \rightarrow 0$.

- Thus, the equation

$$
T x=y
$$

need not have a solution.

[^0]- Thus, the equation

$$
T x=y
$$

need not have a solution.

- Let $y \in R(T)$ and $T x=y$. For $n \in \mathbb{N}$, let

$$
y_{n}:=y+\sqrt{\sigma}_{n} v_{n}, \quad x_{n}=x+u_{n} / \sqrt{\sigma}_{n} .
$$

Then $T x_{n}=y_{n}$. Note that

[^1]- Thus, the equation

$$
T x=y
$$

need not have a solution.

- Let $y \in R(T)$ and $T x=y$. For $n \in \mathbb{N}$, let

$$
y_{n}:=y+\sqrt{\sigma}_{n} v_{n}, \quad x_{n}=x+u_{n} / \sqrt{\sigma}_{n} .
$$

Then $T x_{n}=y_{n}$. Note that

$$
\left\|y_{n}-y\right\|=\sqrt{\sigma}_{n} \rightarrow 0 \quad \text { but } \quad\left\|x_{n}-x\right\|=\frac{1}{\sqrt{\sigma}_{n}} \rightarrow \infty
$$

[^2]- Thus, the equation

$$
T x=y
$$

need not have a solution.

- Let $y \in R(T)$ and $T x=y$. For $n \in \mathbb{N}$, let

$$
y_{n}:=y+\sqrt{\sigma}_{n} v_{n}, \quad x_{n}=x+u_{n} / \sqrt{\sigma}_{n} .
$$

Then $T x_{n}=y_{n}$. Note that

$$
\left\|y_{n}-y\right\|=\sqrt{\sigma}_{n} \rightarrow 0 \quad \text { but } \quad\left\|x_{n}-x\right\|=\frac{1}{\sqrt{\sigma}_{n}} \rightarrow \infty
$$

Thus:

[^3]- Thus, the equation

$$
T x=y
$$

need not have a solution.

- Let $y \in R(T)$ and $T x=y$. For $n \in \mathbb{N}$, let

$$
y_{n}:=y+\sqrt{\sigma}_{n} v_{n}, \quad x_{n}=x+u_{n} / \sqrt{\sigma}_{n} .
$$

Then $T x_{n}=y_{n}$. Note that

$$
\left\|y_{n}-y\right\|=\sqrt{\sigma}_{n} \rightarrow 0 \quad \text { but } \quad\left\|x_{n}-x\right\|=\frac{1}{\sqrt{\sigma}_{n}} \rightarrow \infty
$$

Thus:

- The problem of solving the equation $T_{x}=y$ is ill-posed ${ }^{2}$.

[^4]For $n \in \mathbb{N}$, let

$$
T_{n} x=\sum_{j=1}^{n} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}, \quad x \in \mathcal{H}_{1}
$$

Then $T_{n}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a finite rank bounded operator and we have

For $n \in \mathbb{N}$, let

$$
T_{n} x=\sum_{j=1}^{n} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}, \quad x \in \mathcal{H}_{1}
$$

Then $T_{n}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a finite rank bounded operator and we have

$$
\left\|\left(T-T_{n}\right) x\right\|^{2}=\sum_{j=n+1}^{\infty} \sigma_{j}^{2}\left|\left\langle x, u_{j}\right\rangle\right|^{2} \leq \sigma_{n+1}^{2}\|x\|^{2}
$$

For $n \in \mathbb{N}$, let

$$
T_{n} x=\sum_{j=1}^{n} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}, \quad x \in \mathcal{H}_{1}
$$

Then $T_{n}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a finite rank bounded operator and we have

$$
\left\|\left(T-T_{n}\right) x\right\|^{2}=\sum_{j=n+1}^{\infty} \sigma_{j}^{2}\left|\left\langle x, u_{j}\right\rangle\right|^{2} \leq \sigma_{n+1}^{2}\|x\|^{2}
$$

Hence, $\left\|T-T_{n}\right\| \leq \sigma_{n+1} \rightarrow 0$.

For $n \in \mathbb{N}$, let

$$
T_{n} x=\sum_{j=1}^{n} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}, \quad x \in \mathcal{H}_{1}
$$

Then $T_{n}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a finite rank bounded operator and we have

$$
\left\|\left(T-T_{n}\right) x\right\|^{2}=\sum_{j=n+1}^{\infty} \sigma_{j}^{2}\left|\left\langle x, u_{j}\right\rangle\right|^{2} \leq \sigma_{n+1}^{2}\|x\|^{2}
$$

Hence, $\left\|T-T_{n}\right\| \leq \sigma_{n+1} \rightarrow 0$.

- $\left(T_{n}\right)$ is a norm approximation of T.
- T is a compact operator.

Definition

A bounded linear operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is called a compact operator if closure of $\{T x:\|x\| \leq 1\}$ is compact in \mathcal{H}_{2}.

[^5]
Definition

A bounded linear operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is called a compact operator if closure of $\{T x:\|x\| \leq 1\}$ is compact in \mathcal{H}_{2}.

Question: Does every compact operator have a representation of the form

$$
T x=\sum_{j=1}^{\infty} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}, \quad x \in \mathcal{H}_{1} . ?
$$

[^6]
Definition

A bounded linear operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is called a compact operator if closure of $\{T x:\|x\| \leq 1\}$ is compact in \mathcal{H}_{2}.

Question: Does every compact operator have a representation of the form

$$
T_{x}=\sum_{j=1}^{\infty} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}, \quad x \in \mathcal{H}_{1} . ?
$$

The answer is in the affirmative,

[^7]
Definition

A bounded linear operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is called a compact operator if closure of $\{T x:\|x\| \leq 1\}$ is compact in \mathcal{H}_{2}.

Question: Does every compact operator have a representation of the form

$$
T_{x}=\sum_{j=1}^{\infty} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}, \quad x \in \mathcal{H}_{1} . ?
$$

The answer is in the affirmative, thanks to spectral theorem for a compact self-adjoint operators ${ }^{3},{ }^{4}$.

[^8]
Adjoint of bounded operators

Adjoint of bounded operators

As a consequence of Riesz representation theorem, we have:

Theorem

For every bounded operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$, there exists a unique bounded linear operator $T^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ such that

$$
\langle T x, y\rangle_{\mathcal{H}_{2}}=\left\langle x, T^{*} y\right\rangle_{\mathcal{H}_{1}} \quad \forall(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2}
$$

Adjoint of bounded operators

As a consequence of Riesz representation theorem, we have:

Theorem

For every bounded operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$, there exists a unique bounded linear operator $T^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ such that

$$
\langle T x, y\rangle_{\mathcal{H}_{2}}=\left\langle x, T^{*} y\right\rangle_{\mathcal{H}_{1}} \quad \forall(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2}
$$

Definition

The operator T^{*} defined in the last theorem is called the adjoint of T.

Adjoint of bounded operators

As a consequence of Riesz representation theorem, we have:

Theorem

For every bounded operator $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$, there exists a unique bounded linear operator $T^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ such that

$$
\langle T x, y\rangle_{\mathcal{H}_{2}}=\left\langle x, T^{*} y\right\rangle_{\mathcal{H}_{1}} \quad \forall(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2}
$$

Definition

The operator T^{*} defined in the last theorem is called the adjoint of T.

A bounded operator $A: \mathcal{H} \rightarrow \mathcal{H}$ on a Hilbert space \mathcal{H} called a self-adjoint operator if $A^{*}=A$, that is,

$$
\langle A x, y\rangle=\langle x, A y\rangle \quad \forall x, y \in \mathcal{H}
$$

Theorem

(Spectral theorem) If $A: \mathcal{H} \rightarrow \mathcal{H}$ is a compact self-adjoint operator of infinite rank, then there exist an orthonormal set $\left\{u_{1}, u_{2}, \ldots\right\}$ in \mathcal{H} and a sequence $\left(\lambda_{n}\right)$ of real numbers with $\lambda_{n} \rightarrow 0$ such that

$$
A x=\sum_{j=1}^{\infty} \lambda_{j}\left\langle x, u_{j}\right\rangle u_{j} \quad \forall x \in \mathcal{H}
$$

SVD

Now, suppose $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a compact operator.

Now, suppose $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a compact operator.
Then $A:=T^{*} T$ is a compact, positive, self-adjoint operator on \mathcal{H}_{1}. Let

$$
T^{*} T_{x}=\sum_{j=1}^{\infty} \lambda_{j}\left\langle x, u_{j}\right\rangle u_{j} \quad \forall x \in \mathcal{H}_{1}
$$

be the spectral representation of $T^{*} T$.

Now, suppose $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a compact operator.
Then $A:=T^{*} T$ is a compact, positive, self-adjoint operator on \mathcal{H}_{1}. Let

$$
T^{*} T_{x}=\sum_{j=1}^{\infty} \lambda_{j}\left\langle x, u_{j}\right\rangle u_{j} \quad \forall x \in \mathcal{H}_{1}
$$

be the spectral representation of $T^{*} T$. Let

$$
v_{j}=\frac{T u_{j}}{\sigma_{j}}, \quad \sigma_{j}:=\sqrt{\lambda_{j}}, \quad j \in \mathbb{N}
$$

Now, suppose $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a compact operator.
Then $A:=T^{*} T$ is a compact, positive, self-adjoint operator on \mathcal{H}_{1}. Let

$$
T^{*} T_{x}=\sum_{j=1}^{\infty} \lambda_{j}\left\langle x, u_{j}\right\rangle u_{j} \quad \forall x \in \mathcal{H}_{1}
$$

be the spectral representation of $T^{*} T$. Let

$$
v_{j}=\frac{T u_{j}}{\sigma_{j}}, \quad \sigma_{j}:=\sqrt{\lambda_{j}}, \quad j \in \mathbb{N}
$$

We observe that

Now, suppose $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a compact operator.
Then $A:=T^{*} T$ is a compact, positive, self-adjoint operator on \mathcal{H}_{1}. Let

$$
T^{*} T x=\sum_{j=1}^{\infty} \lambda_{j}\left\langle x, u_{j}\right\rangle u_{j} \quad \forall x \in \mathcal{H}_{1}
$$

be the spectral representation of $T^{*} T$. Let

$$
v_{j}=\frac{T u_{j}}{\sigma_{j}}, \quad \sigma_{j}:=\sqrt{\lambda_{j}}, \quad j \in \mathbb{N}
$$

We observe that

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle T u_{i}, T u_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, T^{*} T u_{j}\right\rangle=\frac{\sigma_{j}^{2}}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}
$$

Thus,

Now, suppose $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a compact operator.
Then $A:=T^{*} T$ is a compact, positive, self-adjoint operator on \mathcal{H}_{1}. Let

$$
T^{*} T x=\sum_{j=1}^{\infty} \lambda_{j}\left\langle x, u_{j}\right\rangle u_{j} \quad \forall x \in \mathcal{H}_{1}
$$

be the spectral representation of $T^{*} T$. Let

$$
v_{j}=\frac{T u_{j}}{\sigma_{j}}, \quad \sigma_{j}:=\sqrt{\lambda_{j}}, \quad j \in \mathbb{N}
$$

We observe that

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle T u_{i}, T u_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, T^{*} T u_{j}\right\rangle=\frac{\sigma_{j}^{2}}{\sigma_{i} \sigma_{j}}\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}
$$

Thus,

- $\left\{v_{j}: j \in \mathbb{N}\right\}$ is an orthonormal basis of $R(T)$.

Note that, for $x \in \mathcal{H}_{1}$,

$$
T x=0 \Longleftrightarrow T^{*} T x=0 \Longleftrightarrow\left\langle x, u_{j}\right\rangle=0 \quad \forall j \in \mathbb{N} .
$$

Note that, for $x \in \mathcal{H}_{1}$,

$$
T x=0 \Longleftrightarrow T^{*} T x=0 \Longleftrightarrow\left\langle x, u_{j}\right\rangle=0 \quad \forall j \in \mathbb{N} .
$$

From this, it can be deduced that

Note that, for $x \in \mathcal{H}_{1}$,

$$
T x=0 \Longleftrightarrow T^{*} T x=0 \Longleftrightarrow\left\langle x, u_{j}\right\rangle=0 \quad \forall j \in \mathbb{N} .
$$

From this, it can be deduced that

- $\left\{u_{j}: j \in \mathbb{N}\right\}$ is an orthonormal basis of $N(T)^{\perp}$.

Note that, for $x \in \mathcal{H}_{1}$,

$$
T x=0 \Longleftrightarrow T^{*} T x=0 \Longleftrightarrow\left\langle x, u_{j}\right\rangle=0 \quad \forall j \in \mathbb{N} .
$$

From this, it can be deduced that

- $\left\{u_{j}: j \in \mathbb{N}\right\}$ is an orthonormal basis of $N(T)^{\perp}$.

Hence, for every $x \in \mathcal{H}_{1}$,

$$
x=u+\sum_{j=1}^{\infty}\left\langle x, u_{j}\right\rangle u_{j} \quad \text { with } \quad u \in N(T)
$$

Note that, for $x \in \mathcal{H}_{1}$,

$$
T x=0 \Longleftrightarrow T^{*} T x=0 \Longleftrightarrow\left\langle x, u_{j}\right\rangle=0 \quad \forall j \in \mathbb{N} .
$$

From this, it can be deduced that

- $\left\{u_{j}: j \in \mathbb{N}\right\}$ is an orthonormal basis of $N(T)^{\perp}$.

Hence, for every $x \in \mathcal{H}_{1}$,

$$
x=u+\sum_{j=1}^{\infty}\left\langle x, u_{j}\right\rangle u_{j} \quad \text { with } \quad u \in N(T)
$$

so that

Note that, for $x \in \mathcal{H}_{1}$,

$$
T x=0 \Longleftrightarrow T^{*} T x=0 \Longleftrightarrow\left\langle x, u_{j}\right\rangle=0 \quad \forall j \in \mathbb{N} .
$$

From this, it can be deduced that

- $\left\{u_{j}: j \in \mathbb{N}\right\}$ is an orthonormal basis of $N(T)^{\perp}$.

Hence, for every $x \in \mathcal{H}_{1}$,

$$
x=u+\sum_{j=1}^{\infty}\left\langle x, u_{j}\right\rangle u_{j} \quad \text { with } \quad u \in N(T)
$$

so that

$$
T x=\sum_{j=1}^{\infty}\left\langle x, u_{j}\right\rangle T u_{j}=\sum_{j=1}^{\infty} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}
$$

Note that, for $x \in \mathcal{H}_{1}$,

$$
T x=0 \Longleftrightarrow T^{*} T x=0 \Longleftrightarrow\left\langle x, u_{j}\right\rangle=0 \quad \forall j \in \mathbb{N} .
$$

From this, it can be deduced that

- $\left\{u_{j}: j \in \mathbb{N}\right\}$ is an orthonormal basis of $N(T)^{\perp}$.

Hence, for every $x \in \mathcal{H}_{1}$,

$$
x=u+\sum_{j=1}^{\infty}\left\langle x, u_{j}\right\rangle u_{j} \quad \text { with } \quad u \in N(T)
$$

so that

$$
T x=\sum_{j=1}^{\infty}\left\langle x, u_{j}\right\rangle T u_{j}=\sum_{j=1}^{\infty} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j}
$$

Thus, we have proved the following theorem.

The SVD

Theorem

(SVD) If $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a compact operator of infinite rank, then

$$
T x=\sum_{j=1}^{\infty} \sigma_{j}\left\langle x, u_{j}\right\rangle v_{j} \quad \forall x \in \mathcal{H}_{1}
$$

where $\left\{u_{1}, u_{2}, \ldots\right\}$ and $\left\{v_{1}, v_{2}, \ldots\right\}$ are orthonormal bases of $N(T)^{\perp}$ and $R(T)$, respectively and $\left(\sigma_{n}\right)$ is a sequence of positive real numbers with $\sigma_{n} \rightarrow 0$.

Generalized solution and Moore-Penrose inverse

Generalized solution and Moore-Penrose inverse

Let us assume, without loss of generality, that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots
$$

Generalized solution and Moore-Penrose inverse

Let us assume, without loss of generality, that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots
$$

- For $y \in \mathcal{H}_{2}$,

$$
x^{\dagger}:=\sum_{j=1}^{\infty} \frac{\left\langle y, v_{j}\right\rangle}{\sigma_{j}} u_{j}
$$

is well-defined iff ${ }^{5}$

$$
\sum_{j=1}^{\infty} \frac{\left|\left\langle y, v_{j}\right\rangle\right|^{2}}{\sigma_{j}^{2}}<\infty
$$

Generalized solution and Moore-Penrose inverse

Let us assume, without loss of generality, that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots
$$

- For $y \in \mathcal{H}_{2}$,

$$
x^{\dagger}:=\sum_{j=1}^{\infty} \frac{\left\langle y, v_{j}\right\rangle}{\sigma_{j}} u_{j}
$$

is well-defined iff ${ }^{5}$

$$
\sum_{j=1}^{\infty} \frac{\left|\left\langle y, v_{j}\right\rangle\right|^{2}}{\sigma_{j}^{2}}<\infty
$$

Let

$$
D:=\left\{y \in \mathcal{H}_{2}: \sum_{j=1}^{\infty} \frac{\left|\left\langle y, v_{j}\right\rangle\right|^{2}}{\sigma_{j}^{2}}<\infty\right\} .
$$

[^9]For $y \in D$, we have
${ }^{6}$ since $\left\{v_{n}: n \in \mathbb{N}\right\}$ is an onb of $\overline{R(T)}$.

For $y \in D$, we have

$$
T x^{\dagger}=\sum_{j=1}^{\infty}\left\langle y, v_{j}\right\rangle u_{j}=P y
$$

where $P: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ is the orthogonal projection ${ }^{6}$ onto $\overline{R(T)}$.

For $y \in D$, we have

$$
T x^{\dagger}=\sum_{j=1}^{\infty}\left\langle y, v_{j}\right\rangle u_{j}=P y
$$

where $P: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ is the orthogonal projection ${ }^{6}$ onto $\overline{R(T)}$.
Hence,

$$
\left\|T x^{\dagger}-y\right\|=\|P y-y\|=\inf _{x \in \mathcal{H}_{1}}\|T x-y\| .
$$

For $y \in D$, we have

$$
T x^{\dagger}=\sum_{j=1}^{\infty}\left\langle y, v_{j}\right\rangle u_{j}=P y
$$

where $P: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ is the orthogonal projection ${ }^{6}$ onto $\overline{R(T)}$.
Hence,

$$
\left\|T x^{\dagger}-y\right\|=\|P y-y\|=\inf _{x \in \mathcal{H}_{1}}\|T x-y\|
$$

- Among all the least-square solutions, x^{\dagger} has the least norm, and it is the only one having the least norm.

For $y \in D$, we have

$$
T x^{\dagger}=\sum_{j=1}^{\infty}\left\langle y, v_{j}\right\rangle u_{j}=P y
$$

where $P: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ is the orthogonal projection ${ }^{6}$ onto $\overline{R(T)}$.
Hence,

$$
\left\|T x^{\dagger}-y\right\|=\|P y-y\|=\inf _{x \in \mathcal{H}_{1}}\|T x-y\|
$$

- Among all the least-square solutions, x^{\dagger} has the least norm, and it is the only one having the least norm.
This is the consequence of the fact that $x^{\dagger} \in N(T)^{\perp}$.
${ }^{6}$ since $\left\{v_{n}: n \in \mathbb{N}\right\}$ is an onb of $\overline{R(T)}$.

Definition

The map $T^{\dagger}: D \rightarrow \mathcal{H}_{1}$ defined by

$$
T^{\dagger} y:=\sum_{j=1}^{\infty} \frac{\left\langle y, v_{j}\right\rangle}{\sigma_{j}} u_{j}, \quad y \in D
$$

is called the Moore-Penrose invere of T.
${ }^{7}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, Second Edition (Under preparation), World Scientific.

Definition

The map $T^{\dagger}: D \rightarrow \mathcal{H}_{1}$ defined by

$$
T^{\dagger} y:=\sum_{j=1}^{\infty} \frac{\left\langle y, v_{j}\right\rangle}{\sigma_{j}} u_{j}, \quad y \in D
$$

is called the Moore-Penrose invere of T.

- T^{\dagger} is a closed densely defined unbounded operator.
${ }^{7}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, Second Edition (Under preparation), World Scientific.

Definition

The map $T^{\dagger}: D \rightarrow \mathcal{H}_{1}$ defined by

$$
T^{\dagger} y:=\sum_{j=1}^{\infty} \frac{\left\langle y, v_{j}\right\rangle}{\sigma_{j}} u_{j}, \quad y \in D
$$

is called the Moore-Penrose invere of T.

- T^{\dagger} is a closed densely defined unbounded operator.

Remark: Morre-Penrose inverse can also be defined for a general bounded operator between Hilbert spaces ${ }^{7}$. In such case, it can be shown that T^{\dagger} is a bounded operator iff $R(T)$ is closed. In the case under discussion, we already having an operator with non-closed range.

[^10]
III-Posedness of $T x=y$

III-Posedness of $T x=y$

Now, if $y, \tilde{y} \in D$, then

$$
T^{\dagger}(y-\tilde{y})=\sum_{i=1}^{\infty} \frac{\left\langle y-\tilde{y}, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

III-Posedness of $T x=y$

Now, if $y, \tilde{y} \in D$, then

$$
T^{\dagger}(y-\tilde{y})=\sum_{i=1}^{\infty} \frac{\left\langle y-\tilde{y}, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

Hence,

$$
\left\|T^{\dagger}(y-\tilde{y})\right\|^{2}=\sum_{i=1}^{\infty} \frac{\left|\left\langle y-\tilde{y}, v_{i}\right\rangle\right|^{2}}{\sigma_{i}^{2}} \geq \frac{\left|\left\langle y-\tilde{y}, v_{k}\right\rangle\right|^{2}}{\sigma_{k}^{2}} \quad \forall k
$$

III-Posedness of $T x=y$

Now, if $y, \tilde{y} \in D$, then

$$
T^{\dagger}(y-\tilde{y})=\sum_{i=1}^{\infty} \frac{\left\langle y-\tilde{y}, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

Hence,

$$
\left\|T^{\dagger}(y-\tilde{y})\right\|^{2}=\sum_{i=1}^{\infty} \frac{\left|\left\langle y-\tilde{y}, v_{i}\right\rangle\right|^{2}}{\sigma_{i}^{2}} \geq \frac{\left|\left\langle y-\tilde{y}, v_{k}\right\rangle\right|^{2}}{\sigma_{k}^{2}} \quad \forall k
$$

In particular, if

$$
y_{k}=y+\sqrt{\sigma}_{k} v_{k}
$$

then we have

III-Posedness of $T x=y$

Now, if $y, \tilde{y} \in D$, then

$$
T^{\dagger}(y-\tilde{y})=\sum_{i=1}^{\infty} \frac{\left\langle y-\tilde{y}, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

Hence,

$$
\left\|T^{\dagger}(y-\tilde{y})\right\|^{2}=\sum_{i=1}^{\infty} \frac{\left|\left\langle y-\tilde{y}, v_{i}\right\rangle\right|^{2}}{\sigma_{i}^{2}} \geq \frac{\left|\left\langle y-\tilde{y}, v_{k}\right\rangle\right|^{2}}{\sigma_{k}^{2}} \quad \forall k
$$

In particular, if

$$
y_{k}=y+\sqrt{\sigma}_{k} v_{k}
$$

then we have

$$
\left\|y_{k}-y\right\|=\sqrt{\sigma}_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

III-Posedness of $T x=y$

Now, if $y, \tilde{y} \in D$, then

$$
T^{\dagger}(y-\tilde{y})=\sum_{i=1}^{\infty} \frac{\left\langle y-\tilde{y}, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

Hence,

$$
\left\|T^{\dagger}(y-\tilde{y})\right\|^{2}=\sum_{i=1}^{\infty} \frac{\left|\left\langle y-\tilde{y}, v_{i}\right\rangle\right|^{2}}{\sigma_{i}^{2}} \geq \frac{\left|\left\langle y-\tilde{y}, v_{k}\right\rangle\right|^{2}}{\sigma_{k}^{2}} \quad \forall k
$$

In particular, if

$$
y_{k}=y+\sqrt{\sigma}_{k} v_{k}
$$

then we have

$$
\left\|y_{k}-y\right\|=\sqrt{\sigma}_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

but

III-Posedness of $T x=y$

Now, if $y, \tilde{y} \in D$, then

$$
T^{\dagger}(y-\tilde{y})=\sum_{i=1}^{\infty} \frac{\left\langle y-\tilde{y}, v_{i}\right\rangle}{\sigma_{i}} u_{i}
$$

Hence,

$$
\left\|T^{\dagger}(y-\tilde{y})\right\|^{2}=\sum_{i=1}^{\infty} \frac{\left|\left\langle y-\tilde{y}, v_{i}\right\rangle\right|^{2}}{\sigma_{i}^{2}} \geq \frac{\left|\left\langle y-\tilde{y}, v_{k}\right\rangle\right|^{2}}{\sigma_{k}^{2}} \quad \forall k
$$

In particular, if

$$
y_{k}=y+\sqrt{\sigma}_{k} v_{k}
$$

then we have

$$
\left\|y_{k}-y\right\|=\sqrt{\sigma}_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

but

$$
\left\|T^{\dagger} y-T^{\dagger} y_{k}\right\|=\frac{1}{\sqrt{\sigma_{k}}} \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty
$$

BHCP

Consider the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}(s, t)=c^{2} \frac{\partial^{2} u}{\partial s^{2}}(s, t), \quad 0<s<\ell, t>0 . \tag{1}
\end{equation*}
$$

If $f_{0} \in L^{2}[0, \ell]$, and

$$
\begin{equation*}
u(\cdot, t):=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2} t}\left\langle f_{0}, \varphi_{n}\right\rangle \varphi_{n}, \tag{2}
\end{equation*}
$$

where

$$
\lambda_{n}:=\frac{n \pi c}{\ell}, \quad \varphi_{n}(s):=\sqrt{\frac{2}{\ell}} \sin \left(\lambda_{n} s\right)
$$

then $u(\cdot, \cdot)$ satisfies (1) with

$$
u(s, 0)=f(s) \quad \text { a.e.. }
$$

ВНСР:

M. T. Nair SVD

BHCP:

The backward heat conduction problem:

ВНСР:

The backward heat conduction problem:

- Given $g \in L^{2}[0, \ell]$, does there exist $u(\cdot, \cdot)$ satisfying (1) and

$$
u(\cdot, \tau)=g ?
$$

ВНСР:

The backward heat conduction problem:

- Given $g \in L^{2}[0, \ell]$, does there exist $u(\cdot, \cdot)$ satisfying (1) and

$$
u(\cdot, \tau)=g ?
$$

- The answer is in the affirmative iff

$$
\begin{equation*}
\sum_{n=1} e^{2 \lambda_{n}^{2}(\tau-t)}\left|\left\langle g, \varphi_{n}\right\rangle\right|^{2}<\infty \tag{3}
\end{equation*}
$$

The function g has to be too smooth!

Proof.

From (2),

$$
\left\langle g, \varphi_{n}\right\rangle=\left\langle u(\cdot, \tau), \varphi_{n}\right\rangle=e^{-\lambda_{n}^{2} \tau}\left\langle f_{0}, \varphi_{n}\right\rangle
$$

so that

$$
\left\langle f_{0}, \varphi_{n}\right\rangle=e^{\lambda_{n}^{2} \tau}\left\langle g, \varphi_{n}\right\rangle
$$

so that

$$
\begin{equation*}
u(\cdot, t):=\sum_{n=1}^{\infty} \mathrm{e}^{\lambda_{n}^{2}(\tau-t)}\left\langle g, \varphi_{n}\right\rangle \varphi_{n} \tag{4}
\end{equation*}
$$

\Rightarrow

$$
\sum_{n=1}^{\infty} e^{2 \lambda_{n}^{2}(\tau-t)}\left|\left\langle g, \varphi_{n}\right\rangle\right|^{2}<\infty
$$

The relations (3) and (4) implies

$$
\left\langle g, \varphi_{n}\right\rangle=e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle
$$

The relations (3) and (4) implies

$$
\left\langle g, \varphi_{n}\right\rangle=e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle
$$

Hence,

$$
g=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle \varphi_{n} .
$$

The relations (3) and (4) implies

$$
\left\langle g, \varphi_{n}\right\rangle=e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle
$$

Hence,

$$
g=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle \varphi_{n} .
$$

Define $K_{t}: L^{2}[0, \ell] \rightarrow L^{2}[0, \ell]$ by

$$
K_{t} \varphi=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle\varphi, \varphi_{n}\right\rangle \varphi_{n}, \quad \varphi \in L^{2}[0, \ell] .
$$

The relations (3) and (4) implies

$$
\left\langle g, \varphi_{n}\right\rangle=e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle
$$

Hence,

$$
g=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle \varphi_{n} .
$$

Define $K_{t}: L^{2}[0, \ell] \rightarrow L^{2}[0, \ell]$ by

$$
K_{t} \varphi=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle\varphi, \varphi_{n}\right\rangle \varphi_{n}, \quad \varphi \in L^{2}[0, \ell] .
$$

Note that

The relations (3) and (4) implies

$$
\left\langle g, \varphi_{n}\right\rangle=e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle
$$

Hence,

$$
g=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle \varphi_{n} .
$$

Define $K_{t}: L^{2}[0, \ell] \rightarrow L^{2}[0, \ell]$ by

$$
K_{t} \varphi=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle\varphi, \varphi_{n}\right\rangle \varphi_{n}, \quad \varphi \in L^{2}[0, \ell] .
$$

Note that

- K_{t} is a compact, positive, self adjoint operator with exponentially decaying eigenvalues (singular values)

$$
e^{-\lambda_{n}^{2}(\tau-t)}, \quad n \in \mathbb{N} .
$$

The relations (3) and (4) implies

$$
\left\langle g, \varphi_{n}\right\rangle=e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle
$$

Hence,

$$
g=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle u(\cdot, t), \varphi_{n}\right\rangle \varphi_{n} .
$$

Define $K_{t}: L^{2}[0, \ell] \rightarrow L^{2}[0, \ell]$ by

$$
K_{t} \varphi=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}(\tau-t)}\left\langle\varphi, \varphi_{n}\right\rangle \varphi_{n}, \quad \varphi \in L^{2}[0, \ell] .
$$

Note that

- K_{t} is a compact, positive, self adjoint operator with exponentially decaying eigenvalues (singular values)

$$
e^{-\lambda_{n}^{2}(\tau-t)}, \quad n \in \mathbb{N} .
$$

- BHCP is a severely ill-posed problem.

Integral equations of the first kind

Integral equations of the first kind

Consider the integral equation of the first kind,

$$
\begin{equation*}
\int_{a}^{b} k(s, t) x(t) d t=y(s), \quad a \leq s \leq b . \tag{*}
\end{equation*}
$$

Integral equations of the first kind

Consider the integral equation of the first kind,

$$
\begin{equation*}
\int_{a}^{b} k(s, t) x(t) d t=y(s), \quad a \leq s \leq b \tag{*}
\end{equation*}
$$

- If $k(\cdot, \cdot) \in L^{2}([a, b] \times[a, b])$, then $K: L^{2}[a, b] \rightarrow L^{2}[a, b]$, defined by

$$
\left.(K x)(s):=\int_{a}^{b} k(s, t) x(t)\right] d t, \quad x \in L^{2}[a, b], \quad a \leq s \leq b
$$

is a compact operator.

Integral equations of the first kind

Consider the integral equation of the first kind,

$$
\begin{equation*}
\int_{a}^{b} k(s, t) x(t) d t=y(s), \quad a \leq s \leq b . \tag{*}
\end{equation*}
$$

- If $k(\cdot, \cdot) \in L^{2}([a, b] \times[a, b])$, then $K: L^{2}[a, b] \rightarrow L^{2}[a, b]$, defined by

$$
\left.(K x)(s):=\int_{a}^{b} k(s, t) x(t)\right] d t, \quad x \in L^{2}[a, b], \quad a \leq s \leq b,
$$

is a compact operator.

- K is of finite rank of $k(\cdot, \cdot)$ is a degenerate kernel.

Integral equations of the first kind

Consider the integral equation of the first kind,

$$
\begin{equation*}
\int_{a}^{b} k(s, t) x(t) d t=y(s), \quad a \leq s \leq b . \tag{*}
\end{equation*}
$$

- If $k(\cdot, \cdot) \in L^{2}([a, b] \times[a, b])$, then $K: L^{2}[a, b] \rightarrow L^{2}[a, b]$, defined by

$$
\left.(K x)(s):=\int_{a}^{b} k(s, t) x(t)\right] d t, \quad x \in L^{2}[a, b], \quad a \leq s \leq b,
$$

is a compact operator.

- K is of finite rank iff $k(\cdot, \cdot)$ is a degenerate kernel.
- If $k(\cdot, \cdot)$ is non-degenerate, then the problem of solving $(*)$ is ill-posed.

III-Posed Integral Equations

III-Posed integral equations appear in many applications.

III-Posed Integral Equations

III-Posed integral equations appear in many applications.
For example:

III-Posed Integral Equations

III-Posed integral equations appear in many applications.
For example:

- Computerized tomography,
- Geological prospecting,
- Inverse heat conduction problems,
[Radon transform]
[Abel integral equations]
[with smooth kernel]

Applications

Applications

- Computerized Tomography: Radon transform

$$
\left(R_{\omega} f\right)(s)=\int_{-\alpha}^{\alpha} f\left(s \omega+t \omega^{\perp}\right) d t=g(s) .
$$

Applications

- Computerized Tomography: Radon transform

$$
\left(R_{\omega} f\right)(s)=\int_{-\alpha}^{\alpha} f\left(s \omega+t \omega^{\perp}\right) d t=g(s)
$$

$f(\cdot)$ is the "inhomogeneity" or "attenuation coefficient", $g(\cdot)$ is the observation.

Applications

- Computerized Tomography: Radon transform

$$
\left(R_{\omega} f\right)(s)=\int_{-\alpha}^{\alpha} f\left(s \omega+t \omega^{\perp}\right) d t=g(s) .
$$

$f(\cdot)$ is the "inhomogeneity" or "attenuation coefficient", $g(\cdot)$ is the observation.

- Geological prospecting: Abel integral equation

$$
\int_{s}^{\infty} \frac{t x(t)}{\sqrt{t^{2}-s^{2}}} d t=y(s)
$$

Applications

- Computerized Tomography: Radon transform

$$
\left(R_{\omega} f\right)(s)=\int_{-\alpha}^{\alpha} f\left(s \omega+t \omega^{\perp}\right) d t=g(s) .
$$

$f(\cdot)$ is the "inhomogeneity" or "attenuation coefficient", $g(\cdot)$ is the observation.

- Geological prospecting: Abel integral equation

$$
\int_{s}^{\infty} \frac{t x(t)}{\sqrt{t^{2}-s^{2}}} d t=y(s)
$$

$x(\cdot)$ is the density of mineral deposit;
$y(\cdot)$: is the gravimetric measurements

- Inverse heat conduction problems: BHCP

$$
\begin{gathered}
\int_{0}^{\ell} k(s, \xi) f_{0}(\xi) d \xi=g(s) \\
k(s, \xi):=\sum_{n=1}^{\infty} e^{-\lambda_{n}^{2}\left(\tau-t_{0}\right)} \sin \frac{n \pi s}{\ell} \sin \frac{n \pi \xi}{\ell}, \quad \lambda_{n}=\frac{n \pi c}{\ell} .
\end{gathered}
$$

$g:=u(\cdot, \tau)$: temperature at time τ;
$f_{0}:=u\left(\cdot, t_{0}\right):$ temperature at time t_{0}.

How to deal with ill-posed and ill-conditioned problems?

[^11]
How to deal with ill-posed and ill-conditioned problems?

Regularization theory ${ }^{8}$ is the answer!

[^12]
How to deal with ill-posed and ill-conditioned problems?

Regularization theory ${ }^{8}$ is the answer!

- There are many books on inverse and ill-posed problems.

[^13]
How to deal with ill-posed and ill-conditioned problems?

Regularization theory ${ }^{8}$ is the answer!

- There are many books on inverse and ill-posed problems.
- The journals
- Inverse Problems,
- Journal of Inverse and III-Posed Problems,
- Inverse Problems in Science and Engineering,
- Inverse Problems and Imaging
are some of the journals exclusively devoted to this area.

[^14]國 H.W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems. Kluwer, Dordrecht, 1996.
: A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer 1966.
目 M.T. Nair, Functional Analysis: A First Course, Second Edition, PHI-Learning, New Delhi, 2021.
© M.T. Nair, Linear Operator Equations: Approximation and Regularization. World Scientific, Singapore, 2009.
(1) M.T. Nair \& A. Singh, Linear Algebra. Springer, 2018.

Thank you all for your attention!

Functional Analysis, PHI-Learning, Second Edition, 2021

$4 \square$

Linear Algebra, Springer, 2018 (MTN \& AS)

Linear Algebra, Springer, 2018 (MTN \& AS)

M. Thamban Nair - Arindama Singh
 Linear Algebra

Linear Operator Equations: World Scientific, 2009

Linear Operator Equations: World Scientific, 2009

LINEAR
 OPERATOR EQUATIONS

Approximation and Regularization
M. THAMBAN NAIR

1-9 World Scientific

Measure and Integration, CRC Press, 2019

Measure and Integration, CRC Press, 2019

MEASURE AND INTEGRATION

A FIRST COURSE

M Thamban Nair

1 ロ

Calculus of One Variable, Second Edition, Springer, January 2022

Calculus of One Variable, Second Edition, Springer, January 2022

M. Thamban Nair

Calculus of One Variable

Second Edition

[^0]: ${ }^{2}$ M.T. Nair: M.T. Nair: Functional Analysis: A First Course, PHI-Learning 2002, Second Edition 2021 (Chapter 14)

[^1]: ${ }^{2}$ M.T. Nair: M.T. Nair: Functional Analysis: A First Course, PHI-Learning 2002, Second Edition 2021 (Chapter 14)

[^2]: ${ }^{2}$ M.T. Nair: M.T. Nair: Functional Analysis: A First Course, PHI-Learning 2002, Second Edition 2021 (Chapter 14)

[^3]: ${ }^{2}$ M.T. Nair: M.T. Nair: Functional Analysis: A First Course, PHI-Learning 2002, Second Edition 2021 (Chapter 14)

[^4]: ${ }^{2}$ M.T. Nair: M.T. Nair: Functional Analysis: A First Course, PHI-Learning 2002, Second Edition 2021 (Chapter 14)

[^5]: ${ }^{3}$ M.T. Nair, Functional Analysis: A First Course, Second Edition PHI Learning, New Delhi, 2021.
 ${ }^{4}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, Second Edition (Under preparation), World Scientific.

[^6]: ${ }^{3}$ M.T. Nair, Functional Analysis: A First Course, Second Edition PHI Learning, New Delhi, 2021.
 ${ }^{4}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, Second Edition (Under preparation), World Scientific.

[^7]: ${ }^{3}$ M.T. Nair, Functional Analysis: A First Course, Second Edition PHI Learning, New Delhi, 2021.
 ${ }^{4}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, Second Edition (Under preparation), World Scientific.

[^8]: ${ }^{3}$ M.T. Nair, Functional Analysis: A First Course, Second Edition PHI Learning, New Delhi, 2021.
 ${ }^{4}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, Second Edition (Under preparation), World Scientific.

[^9]: ${ }^{5}$ called Piccard condition

[^10]: ${ }^{7}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, Second Edition (Under preparation), World Scientific.

[^11]: ${ }^{8}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, World Scientific 2009 (Second Edition - Under preparation)

[^12]: ${ }^{8}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, World Scientific 2009 (Second Edition - Under preparation)

[^13]: ${ }^{8}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, World Scientific 2009 (Second Edition - Under preparation)

[^14]: ${ }^{8}$ M.T. Nair, Linear Operator Equations: Approximation and Regularization, World Scientific 2009 (Second Edition - Under preparation)

