BITS-Pilani, Hyderabad Campus: Course Description

B.E.(Hons.) Electrical and Electronics Engineering

(for the most updated information, please refer to the latest Bulletin)

<table>
<thead>
<tr>
<th>Year</th>
<th>First Semester</th>
<th>U</th>
<th>Second Semester</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>BIO F110 Biology Laboratory</td>
<td>1</td>
<td>MATH F112 Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIO F111 General Biology</td>
<td>3</td>
<td>ME F110 Workshop Practice</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CHEM F110 Chemistry Laboratory</td>
<td>1</td>
<td>CS F111 Computer Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM F111 General Chemistry</td>
<td>3</td>
<td>EEE F111 Electrical Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH F111 Mathematics I</td>
<td>3</td>
<td>BITS F112 Technical Report Writing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHY F110 Physics Laboratory</td>
<td>1</td>
<td>MATH F113 Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY F111 Mechanics, Oscillations and Waves</td>
<td>3</td>
<td>BITS F111 Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BITS F110 Engineering Graphics</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>17</td>
<td>Total</td>
<td>20</td>
</tr>
<tr>
<td>II</td>
<td>MATH F211 Mathematics III</td>
<td>3</td>
<td>ECON F211 Principles of Economics or Humanities Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEE F211 Electrical Machines</td>
<td>4</td>
<td>MGTS F211 Principles of Management or Humanities Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEE F212 Electromagnetic Theory</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EEE F215 Digital Design</td>
<td>4</td>
<td>EEE F241 Microprocessors & Interfacing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EEE F214 Electronic Devices</td>
<td>3</td>
<td>EEE F242 Control Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20(min)</td>
<td>Total</td>
<td>19(min)</td>
</tr>
<tr>
<td>Summer</td>
<td>BITS F221 Practice School - I (for PS Option Only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>EEE F311 Communication Systems</td>
<td>4to6</td>
<td>EEE F341 Analog Electronics</td>
<td>3to6</td>
</tr>
<tr>
<td></td>
<td>MATH F212 Optimization or</td>
<td>4</td>
<td>EEE F342 Power Electronics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ME F344 Engineering Optimization</td>
<td>3</td>
<td>EEE F312 Power Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EEE F313 Analog & Digital VLSI Design or</td>
<td>2</td>
<td>Discipline Electives</td>
<td>4(min)</td>
</tr>
<tr>
<td></td>
<td>Discipline Electives</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18/21</td>
<td>Total</td>
<td>18/21</td>
</tr>
<tr>
<td>IV</td>
<td>Open Electives or Discipline Electives</td>
<td>5to11</td>
<td>BITS F412 Practice School-II or Thesis</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>or BITS F421T Thesis</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>or Thesis (9) and Electives (6 to 9)</td>
<td>15to18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>15/20</td>
</tr>
</tbody>
</table>

DisciplineCore - 47 or 48 Units (14 Courses) Discipline Electives - 12 Units (4 Courses)
Core Courses:

EEE F111 Electrical Sciences [3 0 3]
Course covers basic passive circuit elements, dependent and independent sources, network theorems, circuit analysis techniques and response of first and second order circuits. Introduction to three-phase circuits, magnetic circuits, transformers, basics of rotating machines. Semiconductors - operation of diodes, zener diodes, bipolar junction transistors and field effect transistors. Biasing techniques and applications of diodes and transistors. Introduction to operational amplifiers and applications. Introduction to Digital Electronics.

EEE F211 Electrical Machines [3 1 4]

EEE F212 Electromagnetic Theory [3 0 3]
Review of mathematics - scalar and vector fields, calculus of scalar and vector fields in Cartesian and curvilinear coordinates, Dirac delta function; Electrostatics - electric field, divergence & curl of electric field, electric potential, work and energy in electrostatics, conductors, electric dipole; Electrostatics in Matter - polarization and field of a polarized object, electric displacement, linear dielectrics; Magnetostatics - Lorentz force law, Biot-Savart law, divergence & curl of magnetic field, magnetic vector potential, magnetic dipole; Magnetostatics in matter - magnetization and field of a magnetized object, the H-field, linear & non-linear magnetic media; Electrodynamics - electromotive force, electromagnetic induction, Maxwell's equations in free space, plane wave solutions of Maxwell's equations in free space.

EEE F214 Electronic Devices [3 0 3]
Crystal structure and growth of semiconductor, electrical conduction in solids, Elementary quantum physics (Photoelectric effect, uncertainty principle, Schrodinger wave equation and tunneling), energy bands in solids, charge carriers in semiconductors, excess carriers in semiconductors, Fabrication of p-n junctions, equilibrium conditions, forward and reverse biased junctions, metal-semiconductor junctions Bipolar junction transistors, field effect
transistors (JFET, HEMT, MOSFET), Special diodes (varactor diode, solar cell, LEDs, Tunnel diode and HBT), dielectric materials and insulation (Polarization mechanisms, frequency dependence, dielectric strength and insulation breakdown).

EEE F215 Digital Design [3 1 4]

Boolean Algebra & logic minimization; combinational logic circuits: arithmetic circuit design, Design using MSI components; Sequential Logic Circuits: flip flops & latches, registers and counters; Finite state machine; HDL Implementation of Digital circuits; Digital Integrated Circuits; Programmable logic devices; Memory organization; Algorithmic State machine; Introduction to computer organization; The course will also have laboratory component on digital design.

EEE F241 Microprocessors and Interfacing [3 1 4]

Programmers model of processor, processor architecture; Instruction set, modular assembly programming using subroutines, macros etc.; Timing diagrams; Concept of interrupts: hardware & software interrupts, Interrupt handling techniques, Interrupt controllers; Types of memory & memory interfacing; Programmable Peripheral devices and I/O Interfacing; DMA controller and its interfacing; Design of processor based system. This course will have laboratory component.

EEE F242 Control Systems [3 0 3]

Modeling and classification of dynamical systems, Properties and advantages of feedback systems, time-domain analysis, frequency-domain analysis, stability and performance analysis, State space analysis, controller design.

EEE F243 Signals & Systems [3 0 3]

This course is intended to provide a comprehensive coverage of Signals and Systems, a fundamental subject of Electrical Engineering. The topics covered are: Continuous-time and discrete-time signals and systems, convolution, properties of linear time-invariant (LTI) systems, Fourier series, Fourier transform, Z transform, Laplace transform; System analysis, frequency response, analog filters, Sampling and reconstruction.

EEE F244 Microelectronic Circuits [3 0 3]

Basic microelectronic circuit analysis and design, biasing in discrete and integrated circuit amplifiers, an overview of modeling of microelectronic devices single and two transistor amplifier configurations with passive and active loads; current mirrors & current sources; single-ended and differential linear amplifiers, differential and multistage amplifiers; 2 stage CMOS OPAMP, frequency response of amplifiers; negative feedback in amplifiers, R-C frequency compensation.

EEE F311 Communication Systems [3 1 4]
Analysis and design of communication systems; analog and digital modulation and demodulation, frequency conversion, multiplexing, noise and distortion; spectral and signal-to-noise ratio analysis, probability of error in digital systems, spread spectrum. Introduction to the basic principles of the design and analysis of modern digital communication systems. Topics include source coding, channel coding, baseband and pass band modulation techniques, receiver design, and channel equalization.

EEE F312 Power Systems

EEE F313 Analog & Digital VLSI Design

Moore's Law, Y chart, MOS device models including Deep Sub-Micron effects; an overview of fabrication of CMOS circuits, parasitic capacitances, MOS scaling techniques, latch up, matching issues, common centroid geometries in layout. Digital circuit design styles for logic, arithmetic and sequential blocks design; device sizing using logical effort; timing issues (clock skew and jitter) and clock distribution techniques; estimation and minimization of energy consumption; Power delay trade off, interconnect modelling; memory architectures, memory circuits design, sense amplifiers; an overview of testing of integrated circuits. Basic and cascaded NMOS/PMOS/CMOS gain stages, Differential amplifier and advanced OPAMP design, matching of devices, mismatch analysis, CMRR, PSRR and slew rate issues, advanced current mirrors; current and voltage references design, common mode feedback circuits, Frequency response, stability and noise issues in amplifiers; frequency compensation techniques.

EEE F341 Analog Electronics

Introduction to operational amplifiers: The difference amplifier and the ideal operational amplifier models, concept of negative feedback and virtual short; Analysis of simple operational amplifier circuits; Effects of real operational amplifier parameters on circuit performance. Linear applications of operational amplifiers: Instrumentation and Isolation amplifiers; Current and voltage sources; Active filters. Non-linear applications of operational amplifiers: Comparators, Linearization amplifiers; Logarithmic amplifiers, multfunction modules & circuits, true rms convertors, Precision and signal conditioning circuits, Waveform Generation: sinusoidal and non-sinusoidal signal generation; Wave shape converters. Timer 555 based circuits, Phase lock loop circuits & applications, IC regulators, Output stage and large signal amplifiers, Power amplifiers, Tuned amplifiers, Analog and Digital interface circuits: A/ D, D/A Converters.

EEE F342 Power Electronics

Need for power conversion; Power electronic converters: classifications and scope; Power
semiconductor switches: diodes, SCR, GTO and transistors (BJT, MOSFET and IGBT): Ratings, static and dynamic characteristics, drive and switching aid circuits and cooling; DC to DC conversion: Buck, Boost and Buck-Boost converters: circuit configuration and analysis with different kinds of loads; Choppers: single quadrant and two quadrant operation with DC motor load and steady state analysis; Rectifiers: single phase and three phase operation, power factor, harmonics and effect of source inductance; Drive concept: Four quadrant drive and load characteristics, selection of motor, control and stability of electric drives, feedback control of drives; DC motor drive; Inverters: single phase and three phase bridge inverters and PWM inverters; Single phase AC voltage regulators and cycloconverter; Induction motor drive - Variable frequency operation of 3-phase induction motor, stator voltage control and V/f control methods; Non-drive application of power electronic converters: UPS, active power line conditioner, electronic ballast and induction.

MATH F212 Optimization

[3 0 3]

Introduction to optimization; linear programming; simplex methods; duality and sensitivity analysis; transportation model and its variants; integer linear programming nonlinear programming; multi-objective optimization; evolutionary computation techniques.

Elective Courses:

BITS F415 Introduction to MEMS

[3 1 4]

Overview, history and industry perspective; working principles; mechanics and dynamics, thermofluid engineering; scaling law; microactuators, microsensors and microelectromechanical systems; microsystem design, modeling and simulation; materials; packaging; microfabrication: bulk, surface, LIGA etc; micromanufacturing; microfluidics; microrobotics; case studies.

CS F213 Object Oriented Programming

[3 1 4]

Object orientation concepts, theories and principles; fundamental concepts of the object model: classes, objects, methods and messages, encapsulation and inheritance, interface and implementation, reuse and extension of classes, inheritance and polymorphism; overloading and overriding; static and dynamic binding; multithreaded programming; event handling and exception handling; process of object oriented requirements specification, analysis and design; notations for object-oriented analysis and design; case studies and applications using some object oriented programming languages. Object Oriented Design Patterns: Behavioral, Structural and Creational.

CS F342 Computer Architecture

[3 1 4]

Processor performance criteria, performance benchmarks, arithmetic circuits, CPU design - instruction set architecture, instruction execution, Single and Multicycle implementation, Pipeline design, Hazards, methods of overcoming hazards, Branch prediction, Memory subsystems including cache optimization, Instruction level Parallelism.

CS F372 Operating Systems

[3 0 3]
Introduction to operating systems; Various approaches to design of operating systems; Overview of hardware support for operating systems; Process/thread management: synchronization and mutual exclusion, inter process communication, CPU scheduling approaches; Memory management: paging, segmentation, virtual memory, page replacement algorithms; File systems: design and implementation of file systems; Input/Output systems; device controllers and device drivers; Security and protection; Case studies on design and implementation of operating system modules.

EEE F346 Data Communication Networks [202]

Communication Concepts; Data and Voice Communications; Hardware Systems and Configurations; Network Topologies and Design Aspects; Protocols; Networking Software; Local Area Networks; Network Security and Management; Emerging Trends in Communications.

EEE F414 Telecommunication Switching Systems & Networks [303]

Introduction, electromechanical switching, pulse dialing and DTMF dialing, stored program control, space division switching, speech digitization and transmission, time division switching, fundamentals of traffic engineering, telephone networks, signaling, data networks, layered architecture and protocols, LANs, packet switching networks, TCP/ IP, ISDN, ATM networks.

EEE F418 Modern Communication Technologies [303]

Modern communication systems overview, Digital modulation techniques, Channel capacity and coding, Digital link improve techniques, Digital receiver design and performance analysis, Wireless communication systems: wireless channel models and link improvement techniques, multiple access schemes. Basic concept of mobile network, Optical Communication Systems: Transmitters, receivers and other optical Communication subsystem, Optical wireless systems.

EEE F426 Fiber Optics & Optoelectronics [303]

Theory of optical fibres; image transmission by fibres; technology of fibre production; fibre testing; characterization of optical fibres; detectors and sources for fibre optic systems; active fibres; applications of optical fibres; optoelectronic devices and applications.

EEE F431 Mobile Telecommunication Networks [303]

Fundamentals of mobile telecommunications, with an overview of first generation (analog) systems and more detailed coverage of second generation (digital) technologies; technology basics including descriptions of wireless network elements, spectrum allocation, frequency reuse, characteristics of the transmission medium; over the-air (OTA) interface characteristics; capacity, coverage, speech coding, channel coding and modulation techniques of TDMA and CDMA technologies; network characteristics; architecture, signaling, element management of IS-41 and GSM networks; call processing; call setup and release, handoff, roaming, advanced services; mobile data communications; circuit and packet switched data services, third generation (wideband data) mobile communications system requirements/ architecture.
EEE F432 Medical Instrumentation [3 0 3]

Basic components of bio-medical instruments, bio-electric signals & recording electrodes, transducers, recording and display devices. Patient care and monitoring systems, cardiovascular measurements-blood pressure, blood flow, cardiac output, heart sounds etc; instrumentation for respiratory and nervous systems, analysis of EEG, ECG, EMG, EOG and action potentials, non-invasive diagnostic measurements - temperature, ultrasonic diagnosis, CAT scan techniques, sensory measurements-motor response, analysis of behaviour etc. biotelemetry, biofeedback, clinical laboratory instruments, X-ray diagnosis. Recent advances in biomedical instrumentation- microprocessor based systems, lasers & optical fiber based systems.

EEE F433 Electromagnetic Fields & Waves [3 0 3]

Maxwell’s equations; application of circuit theory and field theory; Maxwell’s equations in free space and time varying fields; plane waves in dielectric and conducting media; solution of wave equations; the poynting vector; the poynting theorem; poynting vector in conducting media and circuit application; wave polarization; linear, elliptical and circular polarization; wave reflection, refraction and diffraction; transmission lines and resonators; Smith chart, and its applications in stub matching and impedance matching; discontinuities; antennas and radiation; halfwave dipole anantenna; loop antenna; helical antenna; directive arrays; frequency independent antennas; reflector and lens antennas; horn antennas; antenna arrays; Friis formula; antenna practices and antenna measurements.

EEE F434 Digital Signal Processing [3 1 4]

Introduction; design of analog filters; design of digital filters (IIR and FIR); structures for the realization of digital filters; random signals and random processes; linear estimation and prediction; Wiener filters; DSP processor architecture; DSP algorithms for different applications.

EEE F435 Digital Image Processing [3 0 3]

This is a first course on digital image processing. It begins with an introduction to the fundamentals of digital images and discusses the various discrete transforms, which are extensively used in image processing. It then goes on to discuss the different image processing techniques such as image enhancement, image restoration and image compression. Finally, it briefly touches upon automatic image classification and recognition.

EEE F472 Satellite Communication [3 0 3]

Review of microwave communications and LOSsystems; the various satellite orbits like GEO, MEO, LEO; the satellite link analysis and design;the communication transponder system like INSAT,INELSAT etc; the earth segment and earth station engineering; the transmission of analog and digital signals through satellite and various modulation techniques employed; the multiple access techniques like FDMA, TDMA, CDMA,DAMA, etc; the INSAT program; salient features of INSAT -systems and services offered; satellite services offered by INTELSAT, INMARSAT and future satellites like IRIDIUIM etc; future trends in satellite communications.