Course Description

M.E. Embedded Systems
Core Courses:

EEE G512 Embedded System Design [3 1 4]

Introduction to embedded systems; embedded architectures: Architectures and programming of microcontrollers and DSPs. Embedded applications and technologies; power issues in system design; introduction to software and hardware co-design.

BITS G553 Real Time Systems [5]

Real time software, Real time operating systems scheduling, virtual memory issues and file systems, real time data bases, fault tolerance and exception handling techniques, reliability evaluation, data structures and algorithms for real time/embedded systems, programming languages, compilers and run time environment for real time/embedded systems, real time system design, real time communication and security, real time constraints and multi processing and distributed systems.

CS G523 Software for Embedded Systems [3 2 5]

Real-time and embedded systems; software issues in embedded system; software development process; requirement analysis: use cases, identification and analysis of use cases, use case diagrams; design: architectural design, design patterns and detailed design; implementation: languages, compilers, runtime environments and operating systems for embedded software; testing: methodologies, test cases. The course will also consist of laboratory practices and development of software for embedded systems.

EEE G626 Hardware Software Co-Design [4]

MEL G642 VLSI Architectures [2 2 4]

Overview of CISC processor architectures; Instruction set architecture of CISC processor; hardware flow-charting methods; implementing microprocessor logic from hard-ware flowcharts; RISC instruction set architecture; Pipelined execution of RISC instructions; pipeline execution unit design; control hazards; design of memory hierarchy.

BITS G540 Research Practice [4]

This course is designed to train the students towards acquiring competence in research methodologies. The course will be conducted in terms of actual participation in Research and Development Work. Each student will be assigned to a faculty member to work on specified projects. The student will be required to present a number of seminars in his research area in a structured manner.
Electives:

CS G541 Pervasive Computing
[4]

Select application architectures; hardware aspects; human-machine interfacing; device technology: hardware, operating system issues; software aspects, java; device connectivity issues and protocols; security issues; device management issues and mechanisms; role of web; wap devices and architectures; voice-enabling techniques; PDAs and their operating systems; web application architectures; architectural issues and choices; smart card-based authentication mechanisms; applications; issues and mechanisms in WAP-enabling; access architectures; wearable computing architectures.

CS G553 Reconfigurable Computing
[5]

EA C415 Introduction to MEMS
[4*]

Overview, history and industry perspective; working principles; mechanics and dynamics, thermofluid engineering; scaling law; microactuators, microsensors and microelectromechanical systems; microsystem design, modeling and simulation; materials; packaging; microfabrication: bulk, surface, LIGA etc; micromanufacturing; microfluidics; microrobotics; case studies.

EEE C434 Digital Signal Processing
[3]

Introduction; design of analog filters; design of digital filters: (IIR and FIR); structures for the realization of digital filters; random signals and random processes; linear estimation and prediction; Wiener filters; DSP processor architecture; DSP algorithms for different applications.

EEE G613 Advanced Digital Signal Processing
[5]

Review of stochastic processes, models and model classification, the identification problem, some field of applications, classical methods of identification of impulse response and transfer function models, model learning techniques, linear least square estimator, minimum variance algorithm, stochastic approximation method and maximum likelihood method, simultaneous state and parameter estimation of extended kalman-filter, non-linear identification, quasi linearization, numerical identification methods.

EEE G627 Network Embedded Applications
[4]

MEL G621 VLSI Design
[Intro: NMOS and CMOS circuits; NMOS and CMOS processing technology; CMOS circuits and logic design; circuit characterization and performance estimation; structured design and testing; symbolic layout systems; CMOS subsystem design; system case studies.

MEL G623 Advanced VLSI Design
[5]
Deep submicron device behavior and models, Interconnect modeling for parasitic estimation, Clock signals and system timing--Digital phase locked loop design, memory and array structures, Input/output circuits design, ASIC technology, FPGA technology, High speed arithmetic circuits design, Parallel prefix computation, Logical effort in circuit design, Low power VLSI circuits, Adiabatic logic circuits, Multi threshold circuits, Digital BICMOS circuits, Design of VLSI systems.

MEL G624 Advanced VLSI Architectures
[5]
Instruction set design and architecture of programmable DSP architectures; dedicated DSP architectures for filters and FFTs; DSP transformation and their use in DSP architecture design; Application Specific Instruction set Processor; superscalar and VLIW architectures.

MSE G511 Mechatronics
[3 2 5]
Concepts of measurement of electrical and nonelectrical parameters; displacement, force, pressure etc. and related signal conditioning techniques, drives and actuators, concepts of microprocessors/microcontrollers architecture and programming, memory and I/O interfacing. System design concepts through case studies.